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Abstract

Background: Immune and inflammatory dysfunction was reported to underpin critical COVID-19(coronavirus
disease 2019). We aim to develop a machine learning model that enables accurate prediction of critical COVID-19
using immune-inflammatory features at admission.

Methods: We retrospectively collected 2076 consecutive COVID-19 patients with definite outcomes (discharge or death)
between January 27, 2020 and March 30, 2020 from two hospitals in China. Critical illness was defined as admission to
intensive care unit, receiving invasive ventilation, or death. Least Absolute Shrinkage and Selection Operator (LASSO) was
applied for feature selection. Five machine learning algorithms, including Logistic Regression (LR), Support Vector Machine
(SVM), Gradient Boosted Decision Tree (GBDT), K-Nearest Neighbor (KNN), and Neural Network (NN) were built in a training
dataset, and assessed in an internal validation dataset and an external validation dataset.

Results: Six features (procalcitonin, [T + B + NK cell] count, interleukin 6, C reactive protein, interleukin 2 receptor, T-helper
lymphocyte/T-suppressor lymphocyte) were finally used for model development. Five models displayed varying but all
promising predictive performance. Notably, the ensemble model, SPMCIIP (severity prediction model for COVID-19 by
immune-inflammatory parameters), derived from three contributive algorithms (SVM, GBDT, and NN) achieved the best
performance with an area under the curve (AUC) of 0991 (95% confidence interval [Cl] 0.979-1.000) in internal validation
cohort and 0999 (95% CI 0.998-1.000) in external validation cohort to identify patients with critical COVID-19. SPMCIIP could
accurately and expeditiously predict the occurrence of critical COVID-19 approximately 20 days in advance.
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Conclusions: The developed online prediction model SPMCIIP is hopeful to facilitate intensive monitoring and early

intervention of high risk of critical illness in COVID-19 patients.

Trial registration: This study was retrospectively registered in the Chinese Clinical Trial Registry (ChiCTR2000032161).
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Background

Coronavirus disease 2019 (COVID-19), caused by se-
vere acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [1], ferociously hit the world. Up to
September 20, 2020, there had been 30,675,675 con-
firmed cases and 954,417 deaths worldwide [2]. The
reported mortality in critically ill COVID-19 patients
was approximately 40%, by contrast with 2.3% for
overall patients [3]. Moreover, most patients with
critical COVID-19 had relatively mild symptoms
prior to physiological deterioration. Therefore, early
identification of critically ill patients is crucial for
the management of COVID-19.

Immune/inflammatory response of SARS-CoV-2 infec-
tion is believed to play an essential role in the progres-
sion of COVID-19, though not fully understood [4].
Inflammatory markers, such as C reactive protein (CRP),
procalcitonin (PCT), and ferritin, were markedly elevated
in critically ill COVID-19 patients [5, 6]. Cytokines play
an immunomodulating function, and uncontrolled cyto-
kine storm is responsible for multiorgan dysfunction and
poor outcomes of COVID-19 [7]. With both innate and
adaptive immune compartments contribution, cytokine
storm in COVID-19 is widely concerned [8, 9]. As ex-
pected, the differences of multiple cytokines and im-
mune cells between critically ill and non-critically ill
patients were observed in clinical practice [4]. Besides,
early seroconversion and high antibody (serologic IgM
and IgG antibodies against SARS-CoV-2) titer were
linked with attenuated clinical symptoms [10].

Immune response of SARS-COV-2 infection is a
complex process that has not yet been fully eluci-
dated. Multiple indicators involved may lead to anx-
iety and confusion of clinicians in patient
management. The clinical and imaging features of
patients with different disease severity were com-
pared [11, 12], and several prediction models have
been established. These prognostic factors mainly
included demographic, imaging, and clinical features
[13]. Immune-inflammatory parameters have dis-
played promising prognostic implications, but have
not been utilized to enable prediction of critical
COVID-19. Traditional methods are not competent
in dealing with complex parameters, while machine
learning, a sub-discipline of artificial intelligence,
may be helpful [14].

The objective of this study is to develop and validate a
machine learning model that accurately predicts the oc-
currence of critical illness in patients with COVID-19
based on immune-inflammatory parameters.

Methods

Study design and participants

We conducted a retrospective study that included 2451
consecutive COVID-19 patients with outcomes (dis-
charge or death) between January 27, 2020, and March
30, 2020, from Sino-French New City Campus of Tongji
Hospital and Optical Valley Campus of Tongji Hospital
in China, who were diagnosed according to the 7th edi-
tion of the Diagnosis and Treatment Protocol of
COVID-19 by the National Health Commission of the
People’s Republic of China [15]. Exclusion criteria were
(1) patients under 18years old, or with pregnancy; (2)
patients transferred from Fangcang hospitals for social-
distancing; (3) patients died within 24h of admission,
and patients re-hospitalized or discharged for special
reasons such as dialysis. Details of excluded patients
were as follows: 80 cases without matched diagnosis, 216
cases from Fangcang shelter hospitals, 37 cases died
within 24 h, and 42 cases under 18 years old, et al.

As 375 patients were excluded, 2076 patients were fi-
nally included in this study and divided into three
groups. Specifically, 50% and 50% of patients from Sino-
French New City Campus of Tongji Hospital were ran-
domly divided into the training cohort and the internal
validation cohort. Patients from the Optical Valley Cam-
pus of Tongji Hospital were used as an external valid-
ation cohort. Critical illness was defined as admission to
intensive care unit, undergoing invasive ventilation, or
death [16]. A total of 36 raw immune/inflammatory pa-
rameters (natural killer [NK] cells count, NK cell per-
cent, T-helper + T-suppressor lymphocyte [Th + Ts]
percent, Th/Ts, Th + Ts count, [T + B + NK] count, [T
+ B + NK] percent, Th count, Th percent, Ts count, Ts
percent, total B count, total B percent, total T
lymphocyte-T-helper lymphocyte-T-suppressor lympho-
cyte [total T-THS], total T count, total T percent, com-
plement 3 [C3], complement 4 [C4], ferritin, lymphocyte
[LYM] count, lymphocyte [LYM] percent, C reactive
protein, procalcitonin, interferon-y [[FN-y], tumor ne-
crosis factor a [TNF-a], interleukin-1p [IL-1f],
interleukin-2 receptor [IL-2R], interleukin-4 [IL-4],
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interleukin-6 [IL-6], interleukin-8 [IL-8], interleukin-10
[IL-10], immunoglobulin A [IgA], immunoglobulin G
[IgG], immunoglobulin M [IgM], SARS-CoV-2 specific
antibody IgM [C-IgM], and SARS-CoV-2 specific anti-
body IgG [C-IgG]) were collected from electronic med-
ical records at admission. These features were collected
using the same pre-designed data collection table across
cohorts. Trained researchers entered and double-
checked the data independently.

Data preprocessing

The medical records contained missing entries (Add-
itional file 2a). To address it, we filtered out patients that
harbored more than or equal to 30% missing features,
resulting in 222 patients left in Sino-French New City
Campus of Tongji Hospital and 228 patients left in the
Optical Valley Campus of Tongji Hospital (Additional
file 2b). Then, we abandoned the immune-inflammatory
parameters missing more than or equal to 30% across
the remaining patients, and only 28 features were quali-
fied (Additional file 2c). We utilized the missForest [17]
algorithm to estimate the missing entries in the data
(Additional file 3). The rationale of choosing 30% as ex-
clusion criteria is to include more patients under the
premise of ensuring the imputation robustness. Daniel
et al. have demonstrated that missForest can deal with
features up to 30% missing values with profound per-
formance [17].

Feature selection

We first applied LASSO (Least Absolute Shrinkage and
Selection Operator) logistic regression to identify the
most predictive variables guided by several researches
[16, 18]. LASSO utilizes the L1 penalty to make the coef-
ficients of weak features turn to zero during fitting [19].
We regarded features with zero coefficients as redun-
dant, and only non-zero coefficient features were in-
cluded for model training.

Model development

We fitted the selected features into five machine learn-
ing models, including Logistic Regression (LR), Support
Vector Machine (SVM), Gradient Boosted Decision Tree
(GBDT), K-Nearest Neighbor (KNN), and Neural Net-
work (NN), to predict patients’ critical illness status with
COVID-19. We chose the five models because they are
classic models that are representative, widely used in the
field of EHR prediction, and sensitive to different data
modalities. For instance, based on the decision tree
model, GBDT, where features are merely used to split
the node, is not sensitive to scale and distribution of fea-
tures. Scaling or not will not affect the result of the split
[20], which also applies to KNN. Therefore, scaling is
not required in GBDT and KNN for input training data.
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LR, SVM, and NN propose models by training weights
with the steepest gradient descent algorithm and the
steepest gradient ascent algorithm, respectively. They are
sensitive to feature scale, so standardizing data is needed
to eliminate the differences between features and speed
up model convergence [21]. Patients with predictive
probability larger or equal to 0.5 are considered high
risk, otherwise low risk. To build the ensemble model,
we tried different combination of baseline models and
found that the combination of SVM, GBDT, and NN
with respective weighted voting 0.3, 0.5, and 0.2 achieved
the highest AUC. R library “caret” was utilized for model
training and prediction with tenfold cross-validation.
The LR, SVM, GBDT, KNN, and NN were called with
method “glm,” “svmLinearWeights,” “gbm,” “knn,” and
“avNNet” with default settings, respectively. Data were
scaled and centered before training and testing.

» o«

Statistical analysis

All statistical analysis was performed with R (version
3.6.2). The receiver operating characteristics (ROC)
curve and the area under the curve (AUC) analysis were
conducted with R “pROC” package. The calibration
curve was depicted with R “rms” package. Accuracy
(ACCQ), sensitivity (SE), specificity (SP), positive predict-
ive value (PPV), negative predictive value (NPV),
Cohen’s kappa coefficient (Kappa), F1 score, and Brier
score were calculated with R “caret,” “epiR,” and “rms”
packages. Kaplan-Meier plot with log-rank test was con-
ducted with R “survival” and “survminer” packages.
Model importance was calculated using R package
“caret.” The correlation between selected features and
critical illness status were calculated Spearman correl-
ation. Significance of the difference between the median
values of critical illness and non-critical illness were con-
ducted by the Asymptotic Two-Sample Brown-Mood
Median Test using R “coin” package. P values less than
0.05 were considered statistically significant. Univariate
and multivariate Cox regression were conducted with R
“survival” package. Ninety-five percent confidence inter-
val (CI) are reported if necessary.

Results

Baseline characteristics of patients

A total of 450 patients were finally included in this
study, with 111 patients in the training cohort, 111 pa-
tients in the internal validation cohort, and 228 patients
in external validation cohort. Median age in the training
cohort, internal validation cohort, and external valid-
ation cohort was 62 (54.5-72) years, 64 (52-70.5) years,
and 63 (50-70) years, respectively. Common comorbidi-
ties, such as hypertension and diabetes, and major symp-
toms of COVID-19, including fever, cough, dyspnea,
sputum, and fatigue, were similar among the three
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Table 1 Baseline characteristics of individuals by cohorts
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Characteristics Training cohort

Internal validation cohort External validation cohort

(N=111) (N=111) (N = 228)
Demographics
Age, years 62 (54.5-72) 64 (52-70.5) 63 (50-70)
Sex
Female 65 (58.56%) 53 (47.75%) 116 (50.88%)
Male 46 (41.44%) 58 (52.25%) 112 (49.12%)

Clinical characteristics
Comorbidity number 1 (0-2)
Comorbidity

Hypertension 40 (36.04%)

Diabetes 21 (18.92%)
Coronary heart disease 6 (541%)
Tumor 8 (7.21%)
COPD 1 (0.9%)
Symptoms at admission
Fever 7 (87.39%)
Temp (max) = 39°C 8 (25.23%)
Cough 8 (70.27%)
Dyspnea 6 (50.45%)
Sputum 44 (39.64%)
Fatigue 8 (43.24%)
Diarrhea 1(27.93%)
Myalgia 23 (20.72%)
Nausea or vomiting 3 (2.7%)
Vital status
Critical illness 12 (10.81%)

Noncritical illness 99 (89.19%)
Follow-up

Time to critical illness, days 25 (14.5-34)

1(1-2) 1(0-2)

52 (46.85%)

( (
26 (23.42%) 41 (17.98%)
2 (10.81%) 16 (7.02%)
2 (10.81%) 17 (7.46%)
2 (1.8%) 2 (0.88%)

90 (81.08%) 166 (72.81%)
24 (21.62%) 45 (19.74%)
79 (71.17%) 170 (74.56%)

1 (45.95%) 88 (38.6%)
49 (44.14%) 108 (47.37%)
49 (44.14%) 56 (24.56%)
34 (30.63%) 35 (15.35%)

36 (32.43%) 34 (1491%)
7 (6.31%) 2 (0.88%)

16 (14.41%) 25 (10.96%)

95 (85.59%) 203 (89.04%)

25 (10-30.5) 18.5 (11.75-30.25)

Continuous variables were presented as median (interquartile ranges [IQR]) while categorical variables as counts and percentages (%)

COPD, chronic obstructive pulmonary disease

cohorts. The number of critically ill patients in these
three cohorts was 12 (10.81%), 16 (14.41%), and 25
(10.96%) in turn. Detailed demographic and essential
clinical characteristics are listed in Table 1.

Features included in models

After feature filtering, 28 features were left for feature
selection, including NK cell count, NK cell percent, (Th
+ Ts) percent, Th/Ts, (Th + Ts) count, (T + B + NK)
count, (T + B + NK) percent, Th count, Th percent, Ts
count, Ts percent, total B count, total B percent, total T-
THS, total T count, total T percent, LYM count, LYM
percent, CRP, PCT, TNF-a, IL-1f, IL-2R, IL-6, IL-10,
IL-8, C-IG@G, and C-IGM (Fig. 1a). Missing feature value
imputation was then conducted utilizing random forest.

LASSO logistic regression identified six features (Th/Ts,
CRP, PCT, IL-2R, IL-6, [T + B + NK] count) with the
most predictive performance for model development.
Among these features, (T + B + NK) count was nega-
tively correlated with critical illness (—0.0023), while the
other five features, Th/Ts (0.1534), CRP (0.0145), PCT
(0.0137), IL-2R (4e - 04), and IL-6 (1e — 04), were posi-
tively correlated with critical illness (Fig. 1b).

As shown in Fig. 2a, we conducted the Spearman
correlation analysis between the six features and crit-
ical illness status, the results of which were consist-
ent with that of LASSO analysis. The five
unfavorable prognostic features identified by LASSO
were positively correlated with critical illness at vary-
ing degrees. The top-weighted features IL-6 (R =
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Fig. 1 Feature selection by LASSO. a LASSO variable trace profiles of the 6 features. The vertical dashed line shows the best lambda value (0.025)
chosen by tenfold cross validation. b Feature with zero coefficient (colored with gray) at lambda = 0.025, was considered less crucial to the
patient’s critical illness status and removed by Lasso logistic regression analysis. Feature with positive coefficient (colored with red) are regarded
high risk in respect to critical illness. LASSO, least absolute shrinkage and selection operator. CRP, C reactive protein. PCT, procalcitonin. IL-2R,
interleukin 2 receptor. IL-6, interleukin 6. T + B + NK, T lymphocyte and B lymphocyte and natural killer cells.

Th/Ts,T-helper/T-suppressor lymphocyte

0.55), PCT (R = 0.55), CRP (R = 0.52), IL-2R (R = Significant differences (p < 0.05) of the six features be-
0.45), and Th/Ts (R = 0.23) were consistent with tween critically ill and non-critically ill patients with
previously reported risk factors intimately associated COVID-19 were presented in the standard box plots
with poor outcome of COVID-19 [4-6, 22, 23]. (Fig. 2b). The values of Th/Ts ratio, IL-2R, CRP, IL-6,
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natural killer cells. Th/Ts,T-helper/T-suppressor lymphocyte
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Fig. 2 Statistical analysis of six features selected by Lasso. a Spearman correlation of critical illness status and features. The wider chord, the

stronger positive correlation is. b Density plot of each feature across patients with different critical illness status, respectively. The vertical dashed
line signifies the feature median value, interquartile range is also annotated. The significant test is Asymptotic Two-Sample Brown-Mood Median
Test. CRP, C reactive protein. PCT, procalcitonin. IL-2R, interleukin 2 receptor. IL-6, interleukin 6. T + B 4+ NK, T lymphocyte and B lymphocyte and

and PCT, were significantly higher in critically ill pa-
tients than that in non-critically ill group, while (T + B
+ NK) count was lower in critically ill patients (Add-
itional file 1).

Model performance

In general, all five models (LR, SVM, GBDT, KNN,
and NN) showed varying but promising critical ill-
ness risk prediction performance across cohorts.
The AUC was 0.965 with LR, 0.962 with SVM,
0.956 with GBDT, 0.964 with KNN, and 0.964 with

NN for the internal validation cohort (Fig. 3a). The
AUC was 0.998 with LR, 0.999 with SVM, 0.998
with GBDT, 0.978 with KNN, and 0.999 with NN
for the external validation cohort (Fig. 3b). Among
them, the ensemble model SPMCIIP (severity pre-
diction model for COVID-19 by immune-
inflammatory parameters) derived from three algo-
rithms (SVM, GBDT, and NN) achieved the best
predictive performance. Relative importance of fea-
tures included in SPMCIIP and its baseline models
is shown in Additional file 4.
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Fig. 3 Performance evaluation on the validation dataset. a, b ROC curve and AUC of SVM, LR, GBDT, KNN, and NN in internal validation cohort
and external validation cohort, respectively. ¢, d KM curve of low-risk and high-risk subgroup predicted by SYM model in internal validation
cohort and external validation cohort, respectively. The light red or blue areas refer to the 95% confidence interval. p value is computed by log-
rank test. Hazard ratio (HR) and its 95% confidence interval are obtained with univariate Cox model. SVM, supported vector machine. LR, logistic
regression. GBDT, gradient boosted decision tree. KNN, k-nearest neighbor. NN, neural network. HR, hazard ratio
J

For the internal validation cohort, SPMCIIP achieved
an AUC of 0.991 (95% CI 0.979-1.000) to identify pa-
tients having a high risk of developing critical illness
with an accuracy of 96.4% (95% CI 91.0%-99.0%). For
external validation cohort, SPMCIIP demonstrated an
AUC of 0.999 (95% CI 0.998-1.000) and an accuracy of
99.1% (95% CI 96.9%—-99.9%). The calibration curve of
SPMCIIP in two validation cohorts is depicted in Add-
itional file 5, showing that SPMCIIP also displayed the
minimal Brier score of 0.025 for internal validation co-
hort and 0.007 for external validation cohort. All other
metrics and the performance of the baseline models are
listed in Table 2.

Taking critical illness as endpoint and time from ad-
mission to occurrence of critical COVID-19 or discharge
as the endpoint, Kaplan-Meier analysis further con-
firmed the strong risk stratification ability of SPMCIIP.

SPMCIIP robustly stratified high-risk patients and low-
risk patients with p <0.0001 in both internal and exter-
nal validation cohorts. The univariate Cox analysis also
demonstrated the strong positive correlation between
SPMCIIP predicted critical illness subgroup and the
ground truth critical illness survival for internal (HR,
74.6, 95% CI 16.81-331.10) and external (HR, 17,301.52,
95% CI 0.15-1,938,070,573.08) validation cohorts, re-
spectively (Fig. 3¢, d).

We also developed an online calculator where directly
inputting the values of parameters could yield the risk of
developing critical COVID-19 (https://spmciip.
deepomics.org/). After the clinicians fill in the online
form with corresponding features, SPMCIIP returns a
personalized probability and risk group of critical illness.
lustration of an example of the online prediction sys-
tem is presented in Fig. 4.
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Table 2 Performance metrics for mortality risk prediction of models in cohorts
AUC (95% Accuracy (95% SN (95% ClI) SP (95% Cl) PPV (95% Cl) NPV (95% CI) Kappa F1 Brier
q) q)
Internal validation cohort
LR 0.965 (0.9-1) 0.982 (0.936-0.998) 0.875 (0.617- 1 (0.962-1) 1 (0.768-1) 0.979 (0.928- 0923 0933 0018
0.985) 0.998)
SVM 0.962 (0.898-  0.982 (0.936-0.998) 0.938 (0.698- 0.990 (0.943-1) 0.938 (0.698- 0.990 (0.943-1) 0927 0938 0018
1) 0.998) 0.998)
GBDT 0.956 (0.891-  0.955 (0.898-0.985) 0.875 (0.617- 0.968 (0911- 0.824 (0.566- 0.979 (0.925- 0822 0849 0.045
1) 0.985) 0.993) 0.962) 0.997)
KNN 0.964 (0.899- 0.973(0.923-0994) 0.938 (0.698- 0.979 (0.926- 0.882 (0.636- 0.989 (0.942-1) 0893 0909 0.024
1) 0.998) 0.997) 0.985)
NN 0.964 (0.899- 0.973 (0.923-0.994) 0.938 (0.698- 0.979 (0.926- 0.882 (0.636- 0.989 (0.942-1) 0.893 0909 0.027
1) 0.998) 0.997) 0.985)
0991 (0979- 0.964 (0.910-0990) 0.875 (0.617- 0.979 (0.926- 0.875 (0617- 0.979 (0.926- 0854 0875 0.025
SPMCIIP 1) 0.985) 0.997) 0.985) 0.997)
External validation cohort
LR 0.998 (0.995-  0.978 (0.950-0.993) 0.8 (0.593-0.932) 1(0.982-1) 1(0.832-1) 0.976 (0.945- 0877 0889 0.022
1 0992)
SVM 0.999 (0.998-  0.987 (0.962-0.997) 0.92 (0.740-0.990) 0.995 (0.973-1) 0.958 (0.789- 0.990 (0.965- 0.931 0939 0.011
1) 0.999) 0.999)
GBDT 0.998 (0.995-  0.987 (0.962-0.997) 0.96 (0.797-0.999)  0.990 (0.965- 0.923 (0.749- 0.995 (0.973-1) 0934 0941 0013
1) 0.999) 0.991)
KNN 0978 (0939- 0.987 (0.962-0.997) 0.96 (0.797-0.999)  0.990 (0.965- 0.923 (0.749- 0.995 (0.973-1) 0934 0941 0012
1) 0.999) 0.991)
NN 0.999 (0.998-  0.991 (0.969-0999) 0.96 (0.797-0.999) 0.995 (0.973-1) 0.96 (0.797-0.999)  0.995 (0.973-1) 0955 0960 0.009
1
0.999 (0.998-  0.991 (0.969-0.999) 0.96 (0.797-0.999) 0.995 (0.973-1) 0.96 (0.797-0.999) 0.995 (0.973-1) 0955 0960 0.007
SPMCIIP 1)

LR logistic regression, SVM supported vector machine, GBDT gradient boosted decision tree, KNN k-nearest neighbor, NN neural network, SPMCIIP severity
prediction model for COVID-19 by immune-inflammatory parameters, AUC area under the curve, SN sensitivity, SP specificity, PPV positive predictive value, NPV

negative predictive value, C/ confidence interval

Discussion
In this study, we developed and validated an ensemble
machine learning model based on immune-

inflammatory parameters to predict the risk of critical
COVID-19. We conducted and reported this multicenter
retrospective study following appropriate standards [24].
Importantly, SPMCIIP displayed an AUC exceeding 0.99
to accurately predict critical COVID-19 in both internal
and external validation cohorts. With an expeditious risk
stratification of patients’ prognosis, clinicians can
strengthen the management of patients at high risk of
critical illness, which assists to curb mortality and ra-
tionally allocate medical resources.

The six features involved in SPMCIIP had been proven
correlated with critical illness in COVID-19 patients. Se-
verity of COVID-19 is due to the viral infection and the
host response, and critical COVID-19 is a distinct clin-
ical and immune sepsis subphenotype [25]. Innate im-
mune  hyperactivation and  adaptive = immune
dysregulation after SARS-CoV-2 infection are considered
to play important roles in the development of severe
COVID-19 [26]. The vast release of cytokines in

response to the viral infection can result in a cytokine
storm and symptoms of sepsis. Uncontrolled inflamma-
tion inflicts multi-organ damage, leads to multi-organ
failure including acute respiratory distress syndrome,
and finally results in poor prognosis of COVID-19 [8,
27, 28]. The increase of inflammatory factors and cyto-
kines was observed, especially in critically ill patients.
High level of IL-6 was early reported to be correlated
with SARS-CoV-2 viral load in the blood of critically ill
COVID-19 patients [29]. IL-6 can end the activation of
normal T cells, which may be a reason for lymphopenia;
robust proinflammatory function; and inducing a variety
of acute-phase proteins, such as CRP. It is even reported
that the immune dysregulation is driven by IL-6 in
COVID-19 [30]. With a median incubation time of 5-7
days, and 3-4 days additionally from hospitalization to
requirement of mechanical ventilation or admission to
ICU [31], this subacute pattern of progression in
COVID-19 patients raises the possibility of immunosup-
pression, due both to T cell depletion and exhaustion
after over-activation [26, 32]. Consistent with it, CD4+
T, CD8+ T, and NK cells were observed lower in
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Note: Th/Ts: T-helper / T-suppressor lymphocyte. T+B+NK:

T lymphocytes+ B lymphocytes + Natural killer cells . IL-2R: interleukin 2
receptor. IL-6: interleukin 6. CRP: C reactive protein. PCT:
Procalcitonin.

Fig. 4 lllustration of the online prediction model—SPMCIIP

SPMCIIP: Severity Prediction Model for COVID-19 by Immune-
inflammatory Parameters
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Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

City University of Hong kong, Tat Chee Avenue Kowloon, Hong Kong
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patients with severe disease [33]. Corresponding to this
finding, single-cell sequencing of peripheral blood
mononuclear cells reveals that the expression of multiple
genes related to apoptosis pathway was upregulated in
T, B, NK cell subsets of COVID-19 patients comparing
with healthy people [34]. Lymphopenia, especially the
depletion of T cells, may relate to apoptosis following
overactive inflammatory responses. Further, CD4+ T cell
and NK cell cytopenia are recognized as characteristics
of infection by SARS-CoV-2 [30]. In addition, procalci-
tonin is correlated with increased probability of bac-
terial pathogens [35], and several studies have
demonstrated that higher procalcitonin was presented
in critically ill COVID-19 patients [6, 36, 37]. This
finding indicates bacterial co-infection in critically ill
patients. More accurately, the prevalence of bacterial
co-infection in critically ill COVID-19 patients (14%,
95% CI 5-26) in ICU is higher than that in hospital-
ized COVID-19 patients (7%, 95% CI 3-12%), accord-
ing to a recent meta-analysis [38].

Though the process of COVID-19 infection has not
been fully clarified, the driving role of immune dysfunc-
tion on critical COVID-19 is becoming more evident,
fueling us to leverage immunological features in predict-
ing critical illness. Machine learning can help clinicians
predict the health trajectory of patients, and aid pre-
ventative efforts for improving outcomes [39]. Besides,
machine learning models could predict disregarding

human fatigue, geographic barriers, and temporal re-
strictions in an automated manner. Therefore, a ma-
chine learning model based on immune-inflammatory
parameters could offer great opportunities to accurate
prediction of critical COVID-19 when medical resources
are scarce and COVID-19 infections surge.

Importantly, SPMCIIP can predict the risk of progres-
sing to critical COVID-19 nearly 20 days in advance. Be-
cause the impacts of cytokine release syndrome caused
by SARS-CoV-2 infection on COVID-19 have been in-
creasingly revealed, and understandings of the use of
corticosteroids and other anti-inflammatory drugs con-
tinue to grow [40, 41], early identification of patients
harboring high risk of critical illness potentially facili-
tates timely intervention in compliance with guidelines
and eliminate the occurrence of cytokine storm-derived
multiorgan failure and other refractory states.

The merits of SPMCIIP include its excellent perform-
ance in predicting critical COVID-19. Many machine
learning models for prognosis prediction of COVID-19
have been built based on imaging and clinical features
[16, 42], but few models could yield an AUC as high as
99% to predict critical COVID-19. In the case of limited
medical conditions, such as clinics and small hospitals, a
prediction model with parameters easily determined is
appropriate, once medical conditions permit, the six fea-
tures included in the model are able to be detected, it is
recommended to use the online model SPMCIIP. The
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predictive advantage of SPMCIIP may attribute to the al-
gorithms we adopted, which covered most types of clas-
sification models in machine learning and enabled
dealing with complex data. More importantly, the pre-
dictive superiority of SPMCIP is owing to the immune
and inflammatory features used for model development.
While myriad risk factors associated with occurrence of
critical COVID-19 have been unveiled, it is gradually
recognized that the interplay between immunity and in-
flammation is the predominant factor that affects the
outcome of COVID-19 [43-45]. Our results further
demonstrated the heterogeneity of immune response in
COVID-19 patients and its important prognostic value
delineated previously [46, 47]. The predictive strength of
SPMCIIP could stem from the detailed feature informa-
tion of included patients, though the number of eligible
patients is relatively limited (450/2076).

Our research has some limitations. First, patients
included in this study are primarily locals in Wuhan,
China. Validations of SPMCIIP in other regions and
ethnicities can provide more solid evidence. Second,
this is a retrospective study. Our models should be
independently validated in large-scale prospective co-
horts before the contribution to improved survival
can be elucidated.

Conclusions

In this multicenter retrospective study, we developed
and validated an online model, SPMCIIP, which in-
cluded six immune and inflammatory parameters and
could accurately predict the critical illness risk of
COVID-19 patients, thus triaging patients for appro-
priate treatment and optimizing the use of medical
resources.
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Additional file 1 Differential variables between critical ill and non-critical
ill patients. The significant test is Asymptotic Two-Sample Brown-Mood
Median Test. Abbreviations: Th/Ts, T-helper/T-suppressor lymphocyte. IL-
2R, interleukin 2 receptor. CRP, C reactive protein. IQR, interquartile
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Additional file 2. Visualization of the denosing and filtering process. a,
Heatmap of raw lab test data. b, Heatmap of lab test data after removing
patients with more than and equal to 30% missing entries across the SF
and OV hospitals. ¢, Heatmap of lab test data after removing lab test
features with more than and equal to 30% missing entries across the SF
and OV hospitals. Black tiles refer to missing entries. Abbreviations: NK,
Natural killer cells, Th, T-helper lymphocyte. Ts, T-suppressor lymphocyte.
(3, complement 3. C4, complement 4. CRP, C reactive protein. PCT, pro-
calcitonin IFN-y, interferon-y. TNF-a, tumor necrosis factor a. IL-1(, inter-
leukin 1B. IL-2R, interleukin 2 receptor. IL-4, interleukin 4. IL-6, interleukin
6. IL-8, interleukin 8. IL-10, interleukin 10. IGA, immunoglobulin A. IGG, im-
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antibody IgM. C-IGG, SARS-COV-2 specific antibody IgG. SF, Sino-French
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New City Campus of Tongji Hospital. OV, Optical Valley Campus of Tongji
Hospital.

Additional file 3 Visualization of the imputation process. a, € Heatmap
of SF and OV lab test data before imputation. b, d Heatmap of SF and
QV lab test data after imputation. Black tiles refer to missing entries.
Abbreviations: NK, Natural killer cells, Th, T-helper lymphocyte. Ts, T-
suppressor lymphocyte. CRP, C reactive protein. PCT, procalcitonin. IFN-y,
interferon-y. TNF-q, tumor necrosis factor a. IL-1B, interleukin 10. IL-2R,
interleukin 2 receptor. IL-4, interleukin 4. IL-6, interleukin 6. IL-8, interleukin
8. IL-10, interleukin 10. C-IGM, SARS-COV-2 specific antibody IgM. C-IGG,
SARS-COV-2 specific antibody IgG. SF, Sino-French New City Campus of
Tongji Hospital. OV, Optical Valley Campus of Tongji Hospital.

Additional file 4 Relative feature importance of SVM, GBDT, NN and
SPMCIIP model. Abbreviations: SVM, supported vector machine. GBDT,
Gradient Boosted Decision Tree. NN, neural network. SPMCIIP, Severity
prediction model for COVID-19 by immune-inflammatory parameters.
CRP, C reactive protein. IL-2R, interleukin 2 receptor. IL-6, interleukin 6. NK
Natural killer cells. PCT, procalcitonin. Th, T-helper lymphocyte. Ts, T-
suppressor lymphocyte.

Additional file 5 Calibration curves of SPMCIIP model in cohorts.
Calibration curves of SPMCIIP model in a internal validation cohort and b
external validation cohort, respectively. The triangle represents the
observation group. Each group contained an average of 20 observations.
The dashed line is the ideal calibration curve. The bottom vertical lines
refer to the predicted probability distribution. Red curve is the fitted
nonparametric calibration curve. Abbreviations: AUC, Area under the
curve.
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