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Abstract

Background: Pneumonia complicated by septic shock is associated with significant morbidity and mortality.
Classification and regression tree methodology is an intuitive method for predicting clinical outcomes using binary
splits. We aimed to improve the prediction of in-hospital mortality in patients with pneumonia and septic shock
using decision tree analysis.

Methods: Classification and regression tree models were applied to all patients with pneumonia-associated septic
shock in the international, multicenter Cooperative Antimicrobial Therapy of Septic Shock database between 1996
and 2015. The association between clinical factors (time to appropriate antimicrobial therapy, severity of illness) and
in-hospital mortality was evaluated. Accuracy in predicting clinical outcomes, sensitivity, specificity, and area under
receiver operating curve of the final model was evaluated in training (n = 2111) and testing datasets (n = 2111).

Results: The study cohort contained 4222 patients, and in-hospital mortality was 51%. The mean time from onset
of shock to administration of appropriate antimicrobials was significantly higher for patients who died (17.2 h)
compared to those who survived (5.0 h). In the training dataset (n = 2111), a tree model using Acute Physiology
and Chronic Health Evaluation II Score, lactate, age, and time to appropriate antimicrobial therapy yielded accuracy
of 73% and area under the receiver operating curve 0.75. The testing dataset (n = 2111) had accuracy of 69% and
area under the receiver operating curve 0.72.

Conclusions: Overall mortality (51%) in patients with pneumonia complicated by septic shock is high. Increased
time to administration of antimicrobial therapy, Acute Physiology and Chronic Health Evaluation II Score, serum
lactate, and age were associated with increased in-hospital mortality. Classification and regression tree
methodology offers a simple prognostic model with good performance in predicting in-hospital mortality.
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Background
Pneumonia complicated by septic shock is associated with
significant morbidity and mortality. It is a leading cause of
hospitalization and death with an estimated 423,000 emer-
gency department visits per year and 15.9 deaths per
100,000 individuals in the USA [1, 2]. Annual medical
costs associated with pneumonia were in excess of $10 bil-
lion annually in 2011 [3]. Most existing literature in the
prognostication of pneumonia is targeted at risk stratifica-
tion of patients presenting to hospital to determine the
optimal location of care by predicting risk of death. Little
data exists on predicting in-hospital mortality in patients
presenting with pneumonia complicated by septic shock.
The primary aim of this study was to use classification

and regression tree (CART) methodology to predict
in-hospital mortality of patients with pneumonia compli-
cated by septic shock. CART methodology allows the de-
velopment of predictive models using binary splits on
variables which can be read like a flow chart [4, 5]. Gain-
ing popularity in diverse medical fields [6–8], CART
models offer an intuitive method for predicting out-
comes by using processes familiar to clinicians (e.g.,
“high” versus “low” values of a predictor). We hypothe-
sized that CART models predicting in-hospital mortality
would have good overall performance in terms of pre-
dictive accuracy, sensitivity, specificity, and area under
the receiver operating curve (AUROC). Specifically, the
objectives for this study were to:

1. Assess overall demographic and clinical
characteristics of patients with pneumonia-
associated septic shock

2. Compare demographic and clinical characteristics
of pneumonia-associated septic shock patients based
on clinical outcomes

3. Develop a CART model containing variables
suggested within current literature to predict in-
hospital mortality for patients with pneumonia-
associated septic shock

4. Assess performance of the CART model using
predictive accuracy, sensitivity, specificity, and
AUROC

Methods
This was a nested cohort study within a retrospective
database (the Cooperative Antimicrobial Therapy of
Septic Shock (CATSS) Database) of patients with septic
shock. Data was collected from 28 medical centers in
Canada, the USA, and Saudi Arabia between 1996 and
2015. The details of the study design and data collection
were described in a previous paper [9]. Approval was ob-
tained from the Institutional Review Boards of all par-
ticipating institutions. This study was written according

to the STROBE Guideline for reporting retrospective
studies (see Additional file 1) [10].

Study design: patients and setting
Clinical and microbiological data was extracted for all
patients with pneumonia enrolled in the CATSS data-
base. All patients in the CATSS database had septic
shock, so that all patients included in our study had both
pneumonia and septic shock. The diagnosis of pneumo-
nia was made at the discretion of the physician and
based on clinical, microbiological, and radiographic in-
formation. Only patients with a primary diagnosis of
pneumonia were eligible for this study. Patient records
and information were anonymized and de-identified
prior to use in this analysis. Eligible patients with miss-
ing outcome data were excluded from the final analysis.

Exposures and outcomes
Baseline patient characteristics including demographics
and comorbid conditions were obtained at enrollment
into the registry. Data collected within the first 24 h of
septic shock diagnosis included serum bicarbonate level,
serum lactate, bilirubin, creatinine, platelet count, inter-
national normalized ratio (INR), white blood cell (WBC)
count, number of organ failures, and Acute Physiology
And Chronic Health Evaluation II (APACHE II) score
[11]. The primary outcome of interest was in-hospital
mortality. Time to administration of appropriate antimi-
crobials was defined as the time of development of
shock (hypotension with a mean arterial pressure <
65 mmHg and need for vasopressor support) to the time
of receipt of antimicrobial therapy listed in the CATSS
registry based on review of original patient records.

Operational definitions
Septic shock was defined using the 1992 ACCP/SCCM
guidelines [12]. Per that definition, patients were re-
quired to have documented or suspected infection, per-
sistent hypotension requiring vasopressors, and at least
two of the following four elements: (1) a heart rate of >
90 beats/min, (2) a respiratory rate > 20 breaths/min or
arterial partial pressure of carbon dioxide (PaCO2) of <
32 mmHg. (3) a core temperature of < 36 °C or > 38 °C,
and (4) a WBC count < 4000/μL or > 12,000/μL or bands
> 10%. Hypotension was considered to represent the ini-
tial onset of septic shock when it persisted despite ad-
equate fluid resuscitation (2 l of crystalloid) [13].
Predetermined rules were used to define documented
and suspected infections and to assign significance to
clinical isolates as previously described [9]. Cases of sep-
tic shock caused by infections acquired > 48 h after hos-
pital admission were classified as nosocomial cases.
Predetermined rules were used to assess the appropri-

ateness and delays of initial empiric antimicrobial
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therapy [9, 13, 14]. For septic shock with positive cul-
tures, initial antimicrobial therapy was considered ap-
propriate if an antimicrobial with in vitro activity
appropriate for the isolated pathogen or pathogens was
the first new antimicrobial agent given after the onset of
recurrent or persistent hypotension or was initiated
within 6 h of the administration of the first new anti-
microbial agent. Initial therapy not meeting these criteria
was considered inappropriate [9]. For septic shock with
negative cultures, initial antimicrobial therapy was con-
sidered appropriate when an antimicrobial agent consist-
ent with broadly accepted norms for empiric
management of the typical pathogens for the clinical
syndrome was the new antimicrobial agent given after
the onset of recurrent or persistent hypotension or was
initiated within 6 h of administration of the first new
antimicrobial agent [9]. The designation of appropriate-
ness of empiric therapy of culture-negative infections
was based on recommendations listed in the “Clinical
Approach to Initial Choice of Antimicrobial Therapy”
from the Sanford Guide to Antimicrobial Therapy (most
recently available edition at the time of the case). Add-
itionally, infectious disease physicians and microbiolo-
gists were consulted at the discretion of the clinical
team to account for local practice patterns and regional
bacterial resistance patterns during the study period. To
evaluate the predictive performance of the models, spe-
cificity is defined as the proportion of correctly predicted
outcomes of death and sensitivity is the proportion of
correctly predicted outcomes of survival.

CART analysis
CART is a type of decision tree algorithm which follows
deterministic rules to develop prediction models for
continuous or categorical outcomes. This is a popular
method in clinical prediction modeling because CART
offers models that are simple to use with no calculations
or computer applications to obtain predictions [6–8].
Additionally, CART models offer clear interpretation by
using high versus low values of clinical variables related
to the outcome of interest based on optimal splitting cri-
teria from an automated algorithm. Trees are read from
top to bottom like a flow chart in order to obtain a pre-
diction for a specified outcome (e.g., survived or died).
Starting at the top of a tree, branches corresponding to
observed clinical features are followed until a terminal
node has been reached and the fraction of patients con-
tained in each outcome group is displayed. These tables
may be used to assess the probability that a patient falls
within each outcome category.
CART models were developed using the following al-

gorithm first introduced by Breiman [4].Trees were con-
structed firstly by selecting the variable that optimally
separated outcome groups, and a binary split was made.

Then, from both of these subgroups, subsequent vari-
ables were selected with replacement (meaning that vari-
ables can be used more than once within a model) that
optimally separated outcome groups, and second levels
of binary splits were made. Variable splits were made re-
cursively until stopping criteria were reached, in which
case a terminal node occurred. At each terminal node
was the outcome prediction for the specific subset of the
data.
The features of CART described in the previous para-

graph are advantageous compared to standard logistic
regression for modeling binary outcomes. Potential defi-
ciencies of logistic regression for clinical prediction
modeling include cumbersome calculations (e.g., insert-
ing numbers and exponentiation requires a calculator or
application), unclear interpretation of results (e.g., log
odds ratios are not intuitive, especially in the presence of
interactions between predictor variables), and unsatisfied
assumptions (e.g., linear relationship between predictors
and outcome via the link function may be inappropri-
ate). CART also includes a method for handling missing
predictor data using surrogate splits while logistic re-
gression requires missing data to be filled in using a sep-
arate imputation method for all observations prior to
developing a prediction model. For these reasons, CART
is a beneficial framework for developing clinical predic-
tion models compared to logistic regression.

Variables
The main outcome of interest was in-hospital mortality.
Multiple variables were used in developing the prediction
model. Clinical variables included age, sex, use of mechan-
ical ventilation, location of infection acquisition (nosoco-
mial or community), underlying immunosuppression,
number of systems with end-organ dysfunction, time to
appropriate antimicrobial therapy, body mass index, and
APACHE II score. Biochemical variables included serum
lactate, bilirubin, sodium, creatinine, INR, platelets, WBC
count, and albumin. Microbiological variables included
culture positivity, concomitant bacteremia/fungemia, iso-
lated fungal and bacterial pathogens, and the presence of
antimicrobial resistant organisms. All clinical predictors
were collected at baseline unless otherwise noted.

Statistical methods
Analyses were completed using RStudio software [15].
Patient characteristics were presented as mean (standard
deviation (SD)) or n (percent) and compared using t
tests and binomial tests using the R package tableone
[16]. P values of < 0.05 were considered statistically sig-
nificant. CART models were constructed using a training
dataset (n = 2111) and were assessed using a testing
dataset (n = 2111). Training and test data were randomly
split from the entire dataset. The R package rpart was
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used to develop the CART models [17]. Missing pre-
dictor data were handled using the method of surrogate
splitting, which is a standard built-in feature of CART
implementation using the rpart package. CART can
sometimes produce models, which overfit data (i.e., they
can model too many splits for a specific training data-
set), which may not predict well for independent test
data. One of the ways to reduce overfitting is by con-
straining the number of observations, which each ter-
minal node of the tree must contain. We required that
the minimum number of observations in terminal nodes
of the CART was 100 (i.e., the tuning parameter for
minimum bucket size was 100) to provide a sufficient
amount of data relative to the total training sample for
meaningful predictions within the final variable splits.
Prediction models were assessed in terms of overall ac-
curacy, sensitivity, and specificity using binomial esti-
mates and confidence intervals. AUROC and its
corresponding confidence intervals were determined
using the R packages ROCR [18] and cvAUC [19].

Results
Overall demographic and clinical characteristics
In total, 4222 patients (61% male) with pneumonia and
septic shock were included in the analysis (Table 1). The
mean (SD) age of patients was 62 (17) years. Sixty-three
percent (n = 2652) had positive cultures from clinical
isolates, 21% (n = 876) had concomitant bacteremia, and
35% (n = 1075) had nosocomial infections. Of patients
with positive cultures, the most common pathogens
were Staphylococcus aureus (n = 702, 27%), Streptococcus
spp. (n = 658, 25%), Pseudomonas spp. (n = 267, 10%),
Escherichia coli (n = 225, 9%), Klebsiella spp. (n = 183,
7%), and Haemophilus influenzae (n = 118, 4.4%). Mean
(SD) APACHE II score was 26 (8), and serum lactate
was 4.1 (3.9) mmol/L at onset of septic shock. During
ICU admission, 89% (n = 3760) required mechanical ven-
tilation. Of 3048 patients who received appropriate anti-
microbial therapy after the development of septic shock,
the mean time to administration of antimicrobials was
10.9 h (SD = 18.6 h). Fifty-one percent (n = 2141) of pa-
tients died in hospital.
Of patients with pneumonia and septic shock, 2141

died in hospital and 2081 survived. Patients who died in
hospital were significantly older (mean age of 65 versus
59) and had lower body mass index (28 versus 27) when
compared to survivors (Table 2). The presence of con-
comitant bloodstream infection, empyema, positive
microbiology, gram-negative pathogens, and fungal path-
ogens were associated with increased in-hospital mortal-
ity. Nosocomial pneumonia infections, higher APACHE
II scores, and higher numbers of organ failures were also
associated with worse outcomes (Table 2). Mechanical
ventilation was more commonly used in patients who

died. Admission biochemistry revealed that patients who
died had significantly lower platelets, higher lactate,
higher INR, higher bilirubin, and lower albumin com-
pared to patients who survived. There was no significant
difference detected between the groups for white blood
cell count, sodium, and creatinine. In-hospital mortality
was significantly more common in patients who were
immunocompromised. The mean time to administration
of appropriate antimicrobial therapy was 5 h in patients
who survived and 17 h in patients who died.

CART model predicting in-hospital mortality
The overall dataset was randomly split into training data
for model development and testing data for model valid-
ation. There were no significant differences detected be-
tween the training and test datasets. The CART model
for predicting mortality in patients with pneumonia and
septic shock is depicted in Fig. 1. Variables included
within the model were the time to administration of ap-
propriate antimicrobial therapy, APACHE II score,
serum lactate, and age. The most important predictor of
in-hospital mortality was the time to appropriate anti-
microbial therapy.
The following features were associated with higher

probability of death:

1. Time from onset of septic shock to administration
of appropriate antimicrobial therapy > 6.6 h (node
1, probability of death = 0.76)

2. Time from onset of septic shock to administration
of appropriate antimicrobial therapy < 6.6 h,
APACHE > 28, and lactate > 6.3 mmol/L (node 5,
probability of death = 0.817)

3. Time from onset of septic shock to administration
of appropriate antimicrobial therapy < 6.6 h,
APACHE > 28, lactate < 6.3 mmol/L, and age > 65
(node 7, probability of death = 0.670)

The following features were associated with higher
probability of survival:

1. Time from onset of septic shock to administration
of appropriate antimicrobial therapy < 6.6 h and
APACHE < 28 (node 4, probability of survival =
0.744)

2. Time from onset of septic shock to administration
of appropriate antimicrobial therapy < 6.6 h,
APACHE > 28, lactate < 6.3 mmol/L, and age < 65
(node 8, probability of survival = 0.591)

There were 1174 patients who received appropriate
antimicrobials before the onset of septic shock. In the
training dataset used to develop the CART prediction
model, these were treated as missing. The CART

Speiser et al. Journal of Intensive Care            (2018) 6:66 Page 4 of 10



framework uses a method called surrogate splitting in
order to handle any missing values, in which
non-missing variables are used to make a “surrogate”
split for any missing values. Thus, the patients who re-
ceived appropriate antimicrobials before onset of septic
shock were included in the CART model development.
For use in practice for new observations of patients, one
should follow the branch corresponding to time to ap-
propriate antimicrobials < 6.6 within Fig. 1 (i.e., proceed
to node 2).

Predicting in-hospital mortality: an example
A patient with pneumonia and septic shock presented at
the hospital with the following characteristics:

antimicrobials were administered 3 h after septic shock,
APACHE II score of 30, lactate of 10.2 mmol/L, and age
of 64. At the start, time to antibiotic administration is less
than 6.6 h (true at node 1), so we follow the right branch
to node 2. Next, the APACHE II score is > 28 is true, so
we follow the left branch to node 3. Then, lactate is >
6.3 mmol/L, so we proceed to the left branch to node 5.
Since there are no nodes under node 5, this is our final
prediction for the model. The probability of death for the
patient is 0.817, and the probability of survival is 0.183.
Therefore, the patient is predicted to die in-hospital.

Assessing performance
Performance measures and the associated confidence in-
tervals for the CART model are presented in Table 3. In
the training dataset, the CART prediction model for
mortality yielded overall accuracy of 73%, specificity of
75%, and sensitivity of 71%. The model showed good
overall performance, with training dataset AUROC of
0.75. In the testing dataset, the CART prediction model
for mortality yielded accuracy of 69%, specificity of 72%,
and sensitivity of 65%. The model had good overall per-
formance, with testing dataset AUROC of 0.72.

Discussion
Summary of key results
In this study, we evaluated a large multi-center cohort of
patients with pneumonia complicated by septic shock.
Overall mortality (51%) was high in this population.
There were 3048 patients who received appropriate anti-
microbial therapy after the development of septic shock
with a mean time to appropriate antimicrobial therapy
of 10.9 h. Patients who died in the hospital were signifi-
cantly older and had significantly higher APACHE II
scores, number of organ failures, and admission serum
lactate. Time to administration of appropriate antimicro-
bial therapy remained the most important predictor of
in-hospital mortality in this population. In the training
set (n = 2111), a CART model using APACHE II score,
lactate, age, and time to appropriate antimicrobial ther-
apy yielded predictive accuracy of 73%, specificity 75%,
sensitivity 71%, and AUROC 0.75. In the testing set (n =
2111), the CART model offered predictive accuracy of
69%, specificity 72%, sensitivity 65%, and AUROC 0.72.
The novelty of the study is the use of classification and

regression tree (CART) methodology for the develop-
ment of a simple, accurate prediction model for out-
comes in pneumonia patients with septic shock. CART
allows for development of prediction models using bin-
ary splits and offers an intuitive method for obtaining
predictions of outcome using processes familiar to clini-
cians (e.g., “high” versus “low” values of a predictor).
The nonparametric nature of CART offers results that
are simple to use and does not require calculation of use

Table 1 Demographic and clinical characteristics of
pneumonia-associated septic shock patients

Overall cohort
(n = 4222)

N Number (%) or mean
(SD)

Demographics

Age 4222 62 (17)

Sex (male) 4222 2574 (61.0)

Body mass index 2013 27 (8)

Microbiology characteristics

Concomitant bloodstream infection 4222 876 (20.7)

Empyema 4222 119 (2.8)

Culture positive 4222 2652 (62.8)

Gram positive 4222 1413 (33.5)

Gram negative 4222 1073 (25.4)

Fungal 4222 20 (0.8)

Hospital-acquired infection 4222 1547 (36.6)

Community-acquired infection 4222 2675 (63.4)

Organ failure/support

APACHE 3995 26 (8)

Organ failure day 1 4222 3.8 (1.5)

Mechanical ventilation 4222 3760 (89.1)

Biochemistry (admission)

WBC 4031 16.3 (15.7)

Platelets 4046 206 (136)

Sodium 2488 137.2 (7.1)

Creatinine 3829 189.9 (164.6)

Lactate 2804 4.1 (3.9)

INR 3695 1.7 (1.3)

Bilirubin 3544 29.9 (64.6)

Albumin 1506 22.7 (6.5)

Immunocompromised 4222 561 (13.3)

Time delay from shock to appropriate
antimicrobials (hours)

3048 10.9 (18.6)

Primary outcome: in-hospital mortality 4222 2141 (50.7)
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of an application. Models are easily read and interpreted
using a flow chart diagram. These aspects of CART are
advantageous compared to logistic regression, where cal-
culations may be cumbersome (e.g., plugging in numbers
and exponentiation requires a calculator or application),
interpretation of results may be unclear (e.g., if there are
interactions between two or more predictors), and as-
sumptions may not be satisfied.

Comparison with the literature
Patients with pneumonia complicated by septic shock
are at substantial risk of poor outcomes. The 51%
in-hospital mortality observed in this cohort is substan-
tially higher than the reported mortality for
population-level outcomes in patients with pneumonia
and patients presenting with pneumonia and septic

shock [20, 21]. Despite these studies, a lack of data on
predicting outcomes for patients with pneumonia and
septic shock remained.
In this study, a mechanism for predicting the probabil-

ity of in-hospital mortality was developed using CART
methodology. Previous prediction models have focused
on predicting patient outcomes for purposes of risk
stratification at presentation to hospital with pneumonia
[22–24]. Consistent with previous literature, our study
highlights that the presence of septic shock and the se-
verity of illness (APACHE II), age, lactate, and time to
administration of appropriate antimicrobial therapy sig-
nificantly impacts survival in patients with pneumonia.
In our study, multivariable CART analysis demonstrated
that the most important predictor of mortality was the
increasing time from onset of septic shock to

Table 2 Demographic and clinical characteristics of pneumonia-associated septic shock patients by mortality

Died
(n = 2141)

Survived
(n = 2081)

P value

N Number (%) or mean (SD) N Number (%) or mean (SD)

Demographics

Age 2141 64.6 (15.8) 2081 58.8 (16.7) < 0.001

Sex (male) 2141 1323 (61.8) 2081 1251 (60.1) 0.277

Body mass index 974 26.6 (7.8) 1039 27.7 (7.7) 0.001

Microbiology characteristics

Concomitant bloodstream infection 2141 484 (22.6) 2081 392 (18.8) 0.003

Empyema 2141 45 (2.1) 2081 74 (3.6) 0.010

Culture positive 2141 1421 (66.4) 2081 1231 (59.2) < 0.001

Gram positive 2141 696 (32.5) 2081 717 (34.5) 0.191

Gram negative 2141 608 (28.4) 2081 465 (22.3) < 0.001

Fungal 2141 16 (0.7) 2081 4 (0.2) 0.009

Hospital-acquired infection 2141 957 (44.7) 2081 590 (28.4) < 0.001

Organ failure/support

APACHE 2034 28.5 (8.0) 1961 22.8 (6.7) < 0.001

Organ failure day 1 2141 4.2 (1.6) 2081 3.4 (1.3) < 0.001

Mechanical ventilation 2141 2005 (93.6) 2081 1755 (84.3) < 0.001

Biochemistry (admission)

WBC 2052 16.3 (17.9) 1979 16.4 (13.0) 0.757

Platelets 2021 195 (143) 2025 216 (128) < 0.001

Sodium 1121 137.4 (7.2) 1367 137.0 (7.0) 0.192

Creatinine 1937 192.2 (164.6) 1892 187.5 (164.6) 0.377

Lactate 1447 5.1 (4.6) 1357 3.1 (2.8) < 0.001

INR 1848 1.9 (1.5) 1847 1.6 (1.1) < 0.001

Bilirubin 1768 39.7 (82.7) 1776 20.1 (36.7) < 0.001

Albumin 621 21.6 (6.3) 885 23.5 (6.4) < 0.001

Immunocompromised 2141 360 (16.8) 2081 201 (9.7) < 0.001

Time delay from shock to appropriate antimicrobials (hours) 1494 17.2 (23.6) 1554 5.0 (5.6) < 0.001
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administration of appropriate antimicrobial therapy.
Additional predictors of in-hospital mortality included
severity of illness (APACHE II score), high serum lactate,
and older age. Our study complements previous research
by highlighting the importance of early intervention and
administration of appropriate antimicrobial therapy to
optimize outcomes in patients with septic shock.
Though CART models have existed for several de-

cades, there is a paucity of decision tree models available
for predicting outcomes in critically ill patient popula-
tions. Wong et al. [25] use CART to analyze 355 chil-
dren with septic shock to assess biomarkers and clinical
variables. The resulting decision tree consisted of five

biomarker-based decision rules with ten variable splits.
This work was primarily done to complement micro-
array work to explore potential gene products as targets
in sepsis. Wong et al. subsequently applied the same five
biomarkers along with lactate, age, and chronic disease
status [26] in 672 adult patients with septic shock with
and developed a clinical prediction model with an area
under the receiver curve of 0.72 (validation set), similar
to this study. Besides these two studies which primarily
focused on gene products/potential novel biomarkers
(both < 700 patients), the decision tree approach for pre-
diction has not been previously used for a large popula-
tion of adults with septic shock using readily available
clinical information as in this study.

Limitations
This study should be interpreted within the limitations
of its design. This study is a retrospective analysis of
prospectively collected data and only association, not
causation, can be inferred. Given that this study was ob-
servational, we are unable to conclusively exclude
sources of selection bias [27]. We implemented an

Fig. 1 Depicts the resulting classification and regression tree for predicting in-hospital mortality. The decision tree contains four predictors: time
to appropriate antimicrobial therapy, APACHE II score, lactate, and age. Terminal nodes containing predictions for new observations include 1, 5,
and 7 (predict death) and 4 and 8 (predict alive). To obtain a prediction, one starts at the top of the tree and follows the arrow corresponding to
data for the new observation until a terminal node is reached

Table 3 Performance measures (95% exact binomial confidence
intervals) for the CART model prediction in-hospital mortality

Model Accuracy
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

AUROC
(95% CI)

Training
(n = 2111)

0.73
(0.71, 0.75)

0.75
(0.73, 0.78)

0.71
(0.68, 0.74)

0.75
(0.73, 0.78)

Testing
(n = 2111)

0.69
(0.67, 0.71)

0.72
(0.70, 0.75)

0.65
(0.62, 0.68)

0.72
(0.69, 0.75)
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internal validation scheme that used randomly split
training and testing datasets to build and evaluate the
CART prediction model for mortality. External data
should be used to further validate the CART model. An-
other limitation is that the average time to appropriate
antimicrobial therapy was 6 h, which is greater than the
current suggested 3-h completion of treatment. These
guidelines changed over the course of the study period
(from 1996 to 2016), so we included all data in order to
have a larger sample size to develop a prediction model.
Though current guidelines suggest completion of the
sepsis bundle within 3 h [28], approximately one third of
the patients in this study received appropriate antibiotic
after 6 h. There are several reasons for the longer time
to antibiotics: our study included appropriate use of an-
tibiotics not just time to any usage of antibiotics, about
half of the patients included in our study were ward pa-
tients which have higher time to appropriate antimicro-
bials compared to emergency room admissions, and the
data range for our study is from 1996 to 2016 during
which the time to antibiotics was substantially longer
than the standard practice now. Despite these limita-
tions, the strengths include inclusion of patients from 28
intensive care units across three geographic regions.
Limitations of CART modeling include the challenge

of determining parameters for model building (e.g., de-
ciding the minimum bucket size) and the possible vari-
ability of CART models, as discussed in statistical
literature (e.g., [8, 29–32]) (Additional file 2). Inclusion
of variables for age and APACHE II, which also used age
for its calculation, highlights the importance of age for
predicting outcomes of pneumonia-associated septic
shock patients. Unlike traditional regression models,
which can be negatively influenced by correlated vari-
ables, the CART model can adequately handle correlated
variables due to the binary nature of splitting. However,
these limitations are minimal compared to the beneficial
simplicity and relatively high predictive accuracy of
CART models.

Conclusion
Overall mortality in patients with pneumonia and septic
shock is high (51% in the CATSS dataset). Increasing
time to appropriate antimicrobial therapy, APACHE II
score, serum lactate, and age were significantly associ-
ated with in-hospital mortality. CART models offer sim-
ple prognostic models with good performance.

Additional files

Additional file 1: STROBE guideline for reporting retrospective studies.
(DOCX 38 kb)

Additional file 2: Benefits of CART, tree development, and limitations of
CART models. (DOCX 17 kb)
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