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Abstract 

Background Heterogeneity among critically ill patients undergoing invasive mechanical ventilation (IMV) treat-
ment could result in high mortality rates. Currently, there are no well-established indicators to help identify patients 
with a poor prognosis in advance, which limits physicians’ ability to provide personalized treatment. This study aimed 
to investigate the association of oxygen saturation index (OSI) trajectory phenotypes with intensive care unit (ICU) 
mortality and ventilation-free days (VFDs) from a dynamic and longitudinal perspective.

Methods A group-based trajectory model was used to identify the OSI-trajectory phenotypes. Associations 
between the OSI-trajectory phenotypes and ICU mortality were analyzed using doubly robust analyses. Then, a pre-
dictive model was constructed to distinguish patients with poor prognosis phenotypes.

Results Four OSI-trajectory phenotypes were identified in 3378 patients: low-level stable, ascending, descending, 
and high-level stable. Patients with the high-level stable phenotype had the highest mortality and fewest VFDs. The 
doubly robust estimation, after adjusting for unbalanced covariates in a model using the XGBoost method for gener-
ating propensity scores, revealed that both high-level stable and ascending phenotypes were associated with higher 
mortality rates (odds ratio [OR]: 1.422, 95% confidence interval [CI] 1.246–1.623; OR: 1.097, 95% CI 1.027–1.172, 
respectively), while the descending phenotype showed similar ICU mortality rates to the low-level stable phenotype 
(odds ratio [OR] 0.986, 95% confidence interval [CI] 0.940–1.035). The predictive model could help identify patients 
with ascending or high-level stable phenotypes at an early stage (area under the curve [AUC] in the training dataset: 
0.851 [0.827–0.875]; AUC in the validation dataset: 0.743 [0.709–0.777]).

Conclusions Dynamic OSI-trajectory phenotypes were closely related to the mortality of ICU patients requiring IMV 
treatment and might be a useful prognostic indicator in critically ill patients.
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Background
Invasive mechanical ventilation (IMV) is a cornerstone 
of intensive care medicine and a life-saving tool utilized 
worldwide to manage various conditions, from heart 
failure to respiratory failure [1, 2]. A national popula-
tion-based epidemiological study revealed that IMV utili-
zation for nonsurgical purposes has increased since 1993, 
with the rate peaking at 310.9 per 100,000 adults in 2009 
in the United States of America [3]. Nevertheless, IMV-
associated hospital mortality rates remain high, ranging 
from 21 to 38% [4–6].

Theoretically, uniform management strategies may fail 
and increase mortality rate in the case of heterogeneity. 
However, few studies have focused on the heterogeneity 
of patients with critical illnesses requiring IMV treat-
ment. Su et  al. found that five novel phenotypes were 
associated with mortality in patients with critical illness 
and IMV treatment using machine learning [7]. The pro-
cess of identifying different phenotypes necessitates the 
gathering of data from 22 variables upon admission, a 
procedure that is obviously time-consuming. Moreo-
ver, critically ill patients’ conditions are prone to sudden 
changes [8]. As a result, the application of these five novel 
phenotypes presents considerable challenges in clinical 
practice.

Driving pressure and mechanical power were signifi-
cant predictors of mortality in adult patients requiring 
mechanical ventilation [9, 10]. However, a large obser-
vational study showed that plateau pressure was only 
measured in 40.1% of patients with acute respiratory 
distress syndrome (ARDS), let alone the driving pressure 
and mechanical power that require the measurement of 
plateau pressure [11]. This may not have been included 
because calculating the plateau pressure requires patients 
to be fully sedated with an inspiratory pause time of 2 s, 
which makes frequent measurement of the plateau pres-
sure inconvenient. Moreover, it may cause patient–venti-
lator asynchrony [12]. The oxygen index (OI), a composite 
index integrating the mean airway pressure (MAP), the 
fraction of inspired  O2  (FiO2) and partial pressure of  O2 
 (PaO2), is an important predictor of mortality in pediatric 
and adult patients undergoing IMV treatment [13, 14]. 
As obtaining  PaO2 in the blood requires invasive arte-
rial blood gas analysis, the measurement of OI cannot be 
conducted freely and repeatedly. Therefore, identifying a 
new noninvasive and user-friendly indicator is crucial for 
patients requiring IMV treatment.

The oxygen saturation index (OSI) is a noninvasive 
prognostic indicator as effective as OI and is mostly 
used in pediatrics or newborns with hypoxemic res-
piratory failure or acute lung injury [15–18]. Calculated 
using the MAP,  FiO2, and pulse oximetry  (SpO2), it could 
reflect the oxygenation status and airway resistance. 

Several studies have used the OSI value in assessing adult 
patients with ARDS [19, 20]. Nevertheless, these studies 
typically included the OSI value at admission, neglect-
ing to dynamically monitor changes in OSI values. In 
fact, compared to relying solely on static data, long-term 
monitoring of prognostic indicators may provide more 
meaningful insights into revealing heterogeneity and pro-
moting the timely adjustment of management strategies 
[21]. Moreover, the prognostic value of OSI was never 
explored in the patients with IMV treatment. Therefore, 
this study aimed to explore the association between the 
dynamic OSI trajectories and ICU mortality in adult 
patients undergoing IMV treatment to provide a theo-
retical basis for the improvement of current treatment 
strategies.

Methods
Data source and study population
This retrospective cohort study enrolled patients who 
were admitted from multiple critical care units from 2008 
to 2019. The data were obtained from two databases: 
the Medical Information Market for Intensive Care IV 
(MIMIC-IV) and the eICU Collaborative Research Data-
base (eICU-CRD) [22, 23]. The authors completed a “pro-
tecting human subjects” training and received approval 
from the Institutional Review Boards of the Massachu-
setts Institute of Technology prior to data retrieval. This 
study was approved by the Ethics Committee of the First 
Affiliated Hospital of Zhejiang Chinese Medical Univer-
sity (No. 2023-KLS-173-01). Due to the retrospective 
design, the requirement of informed consent for patients 
was waived. Data were extracted using PostGreSQL tools 
(v9.6; The PostGreSQL Global Development Group, 
USA, http:// www. postg resql. org) by S.X., who completed 
a training program at the National Institutes of Health 
(Certificate Number: 53248857).

Patients who met any of the following criteria were 
excluded from the study: (1) age < 18  years; (2) ICU 
length of stay < 5  days; (3) missing MAP,  FiO2, or  SpO2 
values within the first 5 days after ICU admission (needed 
for the group-based trajectory model [GBTM] analy-
sis); and (4) IMV treatment < 5 days. The study enrolled 
3378 patients, including 1854 and 1524 patients from the 
MIMIC-IV and eICU-CRD databases, respectively.

Patient characteristics and outcomes
The following information was collected upon admis-
sion: (1) demographic data: age, gender, and ethnicity; (2) 
physical examination findings: body mass index (BMI), 
respiratory rate, and heart rate; (3) ventilator setting: 
positive end expiratory pressure (PEEP), plateau pres-
sure, tidal volume, MAP,  FiO2, and  SpO2; (4) labora-
tory events:  PaO2,  PaCO2, PH, white blood cell count, 
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hemoglobin, and platelet count; (5) comorbidity diseases: 
heart failure (HF), chronic kidney disease (CKD), acute 
kidney injury (AKI), chronic obstructive pulmonary dis-
ease (COPD), malignancy, diabetes, and ARDS; (6) treat-
ment: vasopressor therapy, dialysis, and neuromuscular 
blockades (NMBAs); and (7) clinical outcomes: acute 
physiology III score (APS-III), Sequential Organ Failure 
Assessment score (SOFA), ICU mortality, ventilation-
free days (VFDs), and 21-day ICU mortality. Data were 
collected within 48  h of ICU admission, with only the 
first recorded admission eligible for analysis if a patient 
had multiple records. MAP,  FiO2, and  SpO2 were contin-
uously collected every 6 h for 5 days, starting from ICU 
admission. The OSI was calculated using the following 
formula:

The primary endpoint of this study was ICU mortal-
ity while VFDs and 21-day ICU mortality were secondary 
outcomes.

Management of missing data
Missing data were common in large-scale medical data-
bases. Covariates with over 15% missing data were 
removed to enhance the integrity of the data, reduce 
potential bias, and strengthen statistical power [24–27], 
such as mechanical power, the Oxford Acute Severity 
of Illness Score and chronic health points (Additional 
file 1: Fig. S1). For variables with the missing percentage 
less than 15%, multiple imputation method was utilized 
in our study. This method has been extensively utilized 
as the standard approach for handling missing data and 
could relatively precisely estimate correlations based on 
accessible data [28–31]. Briefly, ten datasets were gener-
ated to substitute the missing data utilizing a technique 
known as multiple imputation by chained equations 
(MICE) [32]. MICE applied distinct methods for different 
kinds of covariables. Linear regression was used for scale 
covariables and logistic regression was used for nominal 
covariables. Subsequently, each dataset estimated the 
odds ratio and variance‒covariance matrix, respectively. 
Ultimately, following Rubin’s rules [33], the ten datasets 
were merged into a comprehensive dataset to impute the 
missing data.

Group‑based trajectory model
A GBTM method was applied to identify distinct pheno-
types that followed particular trajectories using the “traj” 
plugin in Stata software to investigate the dynamic OSI 
trajectories [34]. As critically ill patients on mechanical 
ventilation for ≤ 4 days are considered to be in the acute 
phase of mechanical ventilation, the OSI was recorded 

OSI =
FiO2 ∗MAP ∗ 100

SpO2
.

continuously for 5 days after ICU admission for further 
analysis [35]. The following parameters were used to 
determine the appropriate trajectories: Bayesian infor-
mation criterion (BIC), -2*log-likelihood, average poste-
rior probability, entropy, and the number of participants 
within each group. The OSI trajectories were initialized 
as quadratic shapes to determine the appropriate num-
ber of groups. Statistical models with two, three, or four 
classes were compared based on their respective BIC, 
-2*log-likelihood, and entropy. Models with an average 
posterior probability of < 0.7 and groups containing fewer 
than 5% of participants were excluded from subsequent 
analyses. The final functional form of the model was 
determined by evaluating three functional forms starting 
with the highest polynomial, including cubic, quadratic, 
and linear terms.

Directed acyclic graphs
The directed acyclic graphs (DAG) method (Additional 
file 2: Fig. S2) was used to identify the potential covari-
ates that need to be adjusted in the further study by the 
DAGitty tool (https:// dagit ty. net) [36–38]. We identi-
fied 21 covariates for further analysis based on literature 
review, our priori knowledge and the minimally sufficient 
adjustment set, including demographics [39, 40] (age, 
gender and ethnicity), BMI [41],  PaCO2 [42], hemoglobin 
[43], comorbidities (ARDS, COPD, CKD, AKI, malig-
nancy, HF and diabetes) [44–48], ventilation parameters 
(PEEP, plateau pressure, tidal volume, OSI at baseline) 
[49], APS-III score and treatment (dialysis, NMBAs and 
vasopressor therapy) [50–52].

Doubly robust estimation
The doubly robust (DR) estimation method was use-
ful for estimating the casual interference between vari-
ables and has been widely adopted in various studies for 
estimating the causal effect [53–55]. The DR estimation 
method combines two causal estimators: namely, the 
outcome regression and the exposure model based on 
propensity score. This advantageous approach ensures 
that even if only one of the two models is correctly speci-
fied, the causal estimation remains unbiased [56, 57]. 
In the present study, DR estimation was conducted to 
explore the associations between OSI-based phenotypes 
and ICU mortality following two steps. First, 21 covari-
ables were included in multinomial logistic regression 
and Extreme Gradient Boosting (XGBoost) to generate 
the corresponding propensity scores, respectively. These 
propensity scores were then used to reweight the phe-
notypes and create balanced phenotypes using inverse 
probability of treatment weighting (IPTW). Covariates 
for balance were assessed by calculating the standard-
ized mean difference (SMD) in effect size. Covariates 
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with an SMD > 0.1 were considered imbalanced. Second, 
a weighted logistic regression based on the weighted 
model was conducted, thus completing the DR estima-
tion. The variance inflation factor was tested for each 
multinomial model to detect multicollinearity. Generally, 
a variance inflation factor of > 5 is considered an indica-
tion of multicollinearity.

Statistical analysis
Continuous variables were presented as the mean with 
standard deviation for normally distributed data and as 
the median with 25th and 75th percentiles for skewed 
data. Student’s t test (for normally distributed data) or 
the Wilcoxon–Mann–Whitney rank sum test (for skewed 
distributions) was used to determine statistical signifi-
cance. Categorical variables were presented as frequen-
cies and percentages, and the Chi-squared test was used 
to compare all phenotypes.

Kaplan–Meier analysis was used to examine the prog-
nostic value of the OSI phenotypes for 21-day ICU 
mortality; to enhance its clinical utility, we developed a 
predictive model to identify patients with phenotypes 
associated with poor prognoses at an earlier stage. The 
training and validation groups were obtained from the 
MIMIC-IV and eICU-CRD databases, respectively. The 
synthetic minority oversampling technique (SMOTE) 
algorithm was used to equalize the number of groups 
in the training set [58]. The least absolute shrinkage and 
selection operator (LASSO) was used to screen for poten-
tial covariates, and a nomogram was created to show the 
results of the multinomial logistic regression. The area 
under the curve (AUC) was calculated using the receiver 
operating characteristic curve to evaluate the predictive 
power of the model. To evaluate the consistency between 
predicted and observed risks, a calibration curve and the 
Hosmer–Lemeshow test were conducted for the model. 
A decision curve analysis was used to assess the clinical 
usefulness of the model and to examine the net benefit.

Causal mediation analysis was employed to explore 
whether ARDS, as a potential factor affecting ICU mor-
tality, could mediate the effects of the OSI phenotypes on 
ICU mortality [59, 60]. The total effect was separated into 
two parts: the average direct effect (ADE) and the average 
causal mediation effect (ACME). ADE represented the 
direct effect of the OSI phenotypes on ICU mortality, and 
ACME represented the indirect effect of the OSI pheno-
types on ICU mortality due to ARDS. The predicted mar-
ginal effects of the OSI phenotypes were also estimated 
for ARDS.

Subgroup analysis with interaction effects was per-
formed to investigate whether the effects of the OSI 
phenotypes on outcomes differed in specific popula-
tions. Sensitivity analysis was performed to validate the 

association between OSI-trajectory phenotypes and 
ICU mortality using the MIMIC-IV and eICU data-
bases separately. A two-tailed test was performed, and 
P values < 0.05 were considered statistically significant. 
Stata software (v17.0; Stata Corporation, College Sta-
tion, TX, USA), R (v4.2.1; http:// www.R- proje ct. org) and 
Python  (v3.7.3; Python Software Foundation) were used 
to conduct statistical analyses.

Results
The OSI trajectories and baseline characteristics
A total of 25,679 adult patients with ICU lengths of stay 
greater than 5 days were gathered from two distinct data-
bases. 22,301 patients were consequently excluded due 
to missing OSI values and IMV treatment for less than 
5 days. Finally, this study enrolled 3378 patients who met 
the patient selection criteria (Additional file  3: Fig. S3). 
The phenotype selection process of the trajectory model 
is shown in Additional file 4: Tables S1 and S2. Based on 
the OSI trajectories, four distinct phenotypes were iden-
tified: phenotype 1 (low-level stable), in which the OSI 
remained consistently stable at low levels; phenotype 2 
(ascending), in which the OSI gradually increased over 
time; phenotype 3 (descending), in which the OSI gradu-
ally decreased over time; and phenotype 4 (high-level 
stable), in which the OSI remained consistently stable at 
high levels (Fig. 1a). Similar phenotypes were observed in 
the MIMIC-IV and eICU-CRD databases (Fig. 1b and c).

Demographic data, vital signs, laboratory events, 
comorbidities, treatments, and clinical outcomes were 
compared among the four groups. Patients with the 
high-level stable phenotype were found to be the young-
est among the four phenotypes, with the highest baseline 
BMI, OSI at baseline, APS-III score and sequential organ 
failure assessment (SOFA) score, ICU mortality (40.98%) 
and fewest VFDs (1.97  days) compared with the other 
phenotypes (Table 1).

Associations between the OSI trajectories and ICU 
mortality
SMDs generated using the IPTW method are presented 
in Additional file 5: Fig. S4. The SMD generated using 
XGBoost was less than that generated using the logis-
tic regression method. The majority of the covariates 
were evenly balanced, except for age, plateau pressure, 
OSI at baseline, APS-III score, PEEP,  PaCO2, vaso-
pressor therapy, and NMBAs, when IPTW was used 
based on multinomial logistic regression or XGBoost. 
Patients with the high-level stable phenotype exhibited 
the highest mortality rate and fewest VFDs compared 
with patients with the other phenotypes, regardless of 
the crude dataset, IPTW based on the logistic regres-
sion dataset, or IPTW based on the XGBoost dataset 
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(Fig. 2). Similar results were obtained for the MIMIC-
IV and eICU-CRD datasets, demonstrating the robust-
ness of the findings (Additional file 6: Fig. S5).

DR estimation showed that the high-level stable 
and ascending phenotypes were associated with sig-
nificantly higher mortality risks compared with the 
low-level stable phenotype. Furthermore, no differ-
ences were observed between the low-level stable and 
descending phenotypes in the logistic  (ORascending: 
1.522, 95% CI 1.189–1.948;  ORdescending: 1.069, 95% CI 
0.849–1.347;  ORHigh-Level Stable: 2.877, 95% CI 2.099–
3.945) and the XGBoost  (ORascending: 1.097, 95% CI 
1.027–1.172;  ORdescending: 0.986, 95% CI 0.940–1.035; 
 ORHigh-Level: 1.422, 95% CI 1.246–1.623) models 
adjusted for the unbalanced covariates. These results 
were consistent in the models with univariate or all 
covariates adjusted, regardless of whether the IPTW 
method was constructed using logistic regression or 
the XGBoost method, indicating the robustness of the 
findings (Table 2). In addition, similar results were also 

observed in the MIMIC-IV and eICU-CRD databases 
in the sensitivity analysis (Additional file 4: Table S3).

Prognostic value of OSI trajectories for 21‑day ICU 
mortality
Patients with the high-level stable phenotype had the 
highest mortality, and those with the low-level stable 
phenotype had the lowest mortality compared with the 
other phenotypes in the crude model, the IPTW model 
based on logistic regression or XGBoost method (Addi-
tional file 7: Figs. S6, Additional file 8: Fig. S7, Additional 
file  9: Fig. S8). A predictive model was created to iden-
tify the characteristics of patients with worse prognosis 
(high-level stable and ascending phenotypes) and better 
prognosis (descending and low-level stable phenotypes) 
to predict ICU mortality. Based on LASSO regression 
analysis, six variables were selected, and a nomogram was 
plotted to better visualize the predictive model. The AUC 
of the training and validation datasets were 0.851 (0.827–
0.875) and 0.743 (0.709–0.777), respectively (Fig. 3).

Fig. 1 The OSI-trajectory phenotypes of patients with IMV treatment in ICU. As a finite mixture model, group-based trajectory model (GBTM) 
could identify the distinct phenotypes that follow particular trajectories. In this work, based on the OSI trajectories, four distinct phenotypes were 
identified: phenotype 1 (low-level stable), in which the OSI remained consistently stable at low levels; phenotype 2 (ascending), in which the OSI 
gradually increased over time; phenotype 3 (descending), in which the OSI gradually decreased over time; and phenotype 4 (high-level stable), 
in which the OSI remained consistently stable at high levels. This trend has been observed in the MIMIC-IV dataset, EICU-CRD dataset, as well 
as in the combined dataset of the two databases. Phenotype 4 had almost 1.4 times higher odds ratio of mortality compared to the phenotype 
1 in the doubly robust estimation when controlling unbalanced covariates. a The OSI-trajectory phenotypes in the combined dataset. b The 
OSI-trajectory phenotypes in MIMIC-IV dataset. c The OSI-trajectory phenotypes in EICU-CRD dataset. OSI: oxygen saturation index; ICU: intensive 
care medicine; ARDS: acute respiratory distress syndrome; APS-III score: Acute Physiology Score III; MIMIC-IV: the Medical Information Market 
for Intensive Care IV; EICU-CRD: the eICU Collaborative Research Database



Page 6 of 14Shi et al. Journal of Intensive Care           (2023) 11:59 

Table 1 Comparison of baseline characteristics among four phenotypes

BMI: body mass index; OSI: oxygen saturation index; WBC: white blood cell; HB: hemoglobin; PLT: platelet; COPD; chronic obstructive pulmonary disease; NMBAs: 
neuromuscular blockades; ARDS: acute respiratory distress syndrome; APS-III score: Acute Physiology III score; SOFA score: Sequential Organ Failure Assessment score; 
ICU: intensive care unit; VFDs: ventilation-free days

Overall
(n = 3378)

Phenotype 1
(n = 2194)

Phenotype 2
(n = 301)

Phenotype 3
(n = 700)

Phenotype 4
(n = 183)

P

Demographic data

 Age (years) 62.00 [50.00, 72.00] 63.00 [51.00, 74.00] 56.00 [46.00, 68.00] 60.00 [50.00, 71.00] 54.00 [43.00, 63.00] < 0.001

 Male, n (%) 1926 (57.02) 1217 (55.47) 187 (62.13) 412 (58.86) 110 (60.11) 0.071

Ethnicity, n (%) 0.821

  Black 368 (10.89) 25 (8.31) 243 (11.08) 77 (11.00) 23 (12.57)

  White 2255 (66.76) 206 (68.44) 1459 (66.50) 471 (67.29) 119 (65.03)

  Other 755 (22.35) 70 (23.26) 492 (22.42) 152 (21.71) 41 (22.40)

Physical examination findings

 BMI 28.55 [24.13, 34.69] 27.43 [23.42, 32.45] 31.19 [25.90, 38.15] 30.35 [25.16, 37.15] 35.19 [28.31, 45.31] < 0.001

 Respiratory rate 
(beats/min)

20.00 [16.00, 24.00] 19.00 [16.00, 23.00] 20.00 [16.00, 24.00] 22.00 [17.75, 26.00] 22.00 [18.00, 28.00] < 0.001

 Heart rate (beats/
min)

93.00 [78.00, 109.00] 91.00 [77.00, 106.00] 96.00 [83.00, 110.00] 98.00 [81.00, 116.00] 102.00 [85.50, 120.00] < 0.001

Ventilator setting

 PEEP  (cmH2O) 5.00 [5.00, 8.00] 5.00 [5.00, 6.00] 5.86 [5.00, 10.00] 8.00 [5.00, 10.00] 10.00 [5.48, 12.00] < 0.001

 Plateau pressure 
 (cmH2O)

20.00 [16.00, 24.00] 18.00 [15.00, 21.58] 22.00 [18.00, 26.00] 24.00 [20.00, 27.00] 27.00 [23.00, 32.00] < 0.001

 Tidal volume (ml) 480.00 [400.25, 
525.00]

480.65 [402.00, 
522.00]

500.00 [440.00, 
550.00]

465.50 [400.00, 
517.75]

455.00 [400.00, 
529.50]

0.047

 OSI at baseline 7.00 [4.50, 11.17] 5.22 [4.00, 8.00] 9.38 [6.12, 12.50 12.00 [8.59, 16.10] 17.07 [12.18, 21.00] < 0.001

Lab events

  PaO2 (mmHg) 117.37 [80.00, 194.31] 137.00 [91.00, 216.00] 99.00 [72.00, 168.00] 91.00 [68.00, 143.25] 78.00 [61.50, 106.00] < 0.001

  PaCO2(mmHg) 42.00 [35.52, 50.00] 39.93 [34.00, 47.00] 45.00 [38.00, 53.00] 46.00 [39.00, 55.85] 49.00 [41.00, 60.00] < 0.001

 PH 7.34 [7.26, 7.41] 7.36 [7.28, 7.43] 7.32 [7.25, 7.38] 7.29 [7.21, 7.37] 7.29 [7.19, 7.36] < 0.001

 WBC (*109/L) 12.70 [9.10, 17.50] 12.60 [9.12, 17.10] 12.40 [8.40, 17.80] 13.15 [9.10, 18.92] 13.80 [9.55, 17.80] 0.085

 HB (g/L) 10.80 [9.10, 12.60] 10.70 [9.00, 12.50] 11.10 [9.30, 12.90] 11.10 [9.30, 12.80] 11.10 [9.40, 12.75] 0.001

 PLT (*109/L) 195.00 [141.00, 
259.00]

195.00 [143.00, 
259.00]

192.00 [133.00, 
244.00]

198.00 [136.00, 
273.50]

198.00 [135.00, 
249.00]

0.241

Comorbidity disease, n (%)

 Heart failure 661 (19.57) 413 (18.82) 56 (18.60) 154 (22.00) 38 (20.77) 0.290

 Chronic kidney 
disease

239 (7.08) 164 (7.47) 17 (5.65) 45 (6.43) 13 (7.10) 0.591

 Acute kidney injury 1564 (46.30) 912 (41.57) 161 (53.49) 379 (54.14) 112 (61.20) < 0.001

 Malignancy 227 (6.72) 148 (6.75) 16 (5.32) 55 (7.86) 8 (4.37) 0.261

 COPD 709 (20.99) 432 (19.69) 73 (24.25) 161 (23.00) 43 (23.50) 0.087

 Diabetes 814 (24.10) 529 (24.11) 58 (19.27) 177 (25.29) 50 (27.32) 0.144

 ARDS 2039 (60.36) 1205 (54.92) 211 (70.10) 482 (68.86) 141 (77.05) < 0.001

Treatment, n (%)

 Vasopressor 
therapy

1777 (52.61) 965 (43.98) 199 (66.11) 478 (68.29) 135 (73.77) < 0.001

 Dialysis 518 (15.33) 257 (11.71) 64 (21.26) 134 (19.14) 63 (34.43) < 0.001

 NMBAs 619 (18.32) 259 (11.80) 107 (35.55) 169 (24.14) 84 (45.90) < 0.001

Clinical outcomes

 APS-III score 74.00 [56.00, 95.00] 71.00 [51.25, 90.00] 79.00 [62.00, 97.00] 79.00 [61.00, 100.00] 97.00 [69.00, 119.00] < 0.001

 SOFA score 5.00 [1.00, 8.00] 4.00 [1.00, 7.00] 5.00 [2.00, 9.00] 6.00 [2.00, 9.00] 6.00 [3.00, 10.00] < 0.001

 ICU mortality 773 (22.88) 454 (20.69) 95 (31.56) 149 (21.29) 75 (40.98) < 0.001

 VFDs 3.76 [0.40, 8.02] 4.24 [0.52, 8.21] 2.90 [0.25, 7.58] 3.46 [0.44, 7.58] 1.97 [0.21, 7.06] 0.004
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Fig. 2 The comparison of ICU mortality (a) and ventilation-free days (b) among four phenotypes. Patients with phenotype 4 exhibited the highest 
mortality rate and fewest VFDs compared to patients with the other phenotypes, regardless of the use of the crude dataset, IPTW based 
on the logistic regression dataset, or IPTW based on the XGBoost dataset. VFDs: ventilation-free days; IPTW: inverse probability of treatment 
weighting; XGBoost: Extreme Gradient Boosting

Table 2 Results of doubly robust estimation

a Adjusted for plateau pressure, OSI at baseline, PEEP, NMBAs, APS-III score,  PaCO2, vasopressor therapy, age
b Adjusted for plateau pressure, OSI at baseline, PEEP, NMBAs, APS-III score,  PaCO2, vasopressor therapy, age, dialysis therapy, ARDS, AKI, BMI, gender, diabetes, tidal 
volume, ethnicity, HB, COPD, malignancy, HF, CKD

IPTW: inverse probability of treatment weighting; OR: odds ratio; CI: confidence Interval; OSI: oxygen saturation index; NMBAs: neuromuscular blockades; ARDS: acute 
respiratory distress syndrome; APS-III score: acute physiology III score; AKI: acute kidney injury; BMI: body mass index; HB: hemoglobin; COPD: chronic obstructive 
pulmonary disease; HF: heart failure; CKD: chronic kidney disease

Low‑level stable Ascending Descending High‑level stable

OR (95% CI) P value OR (95% CI) P value OR(95%CI) P value

IPTW-logistic

 Propensity score IPTW Reference 1.430 (1.118–1.830) 0.004 1.020(0.813–1.278) 0.866 2.483(1.859–3.317) < 0.001

 Doubly robust with unbalanced 
 covariablesa

Reference 1.522(1.189–1.948) < 0.001 1.069(0.849–1.347) 0.568 2.877(2.099–3.945) < 0.001

 Doubly robust with all  covariablesb Reference 1.473(1.152–1.884) 0.002 1.019(0.817–1.270) 0.869 2.545(1.893–3.422) < 0.001

IPTW-XGBoost

 Propensity score IPTW Reference 1.532(1.200–1.956) 0.001 0.977(0.771–1.238) 0.676 2.988(2.144–4.165) < 0.001

 Doubly robust with unbalanced 
 covariablesa

Reference 1.097(1.027–1.172) < 0.001 0.986(0.940–1.035) 0.849 1.422(1.246–1.623) < 0.001

 Doubly robust with all  covariablesb Reference 1.500(1.178–1.911) 0.001 0.936(0.750–1.168) 0.556 2.776(1.988–3.875) < 0.001

(See figure on next page.)
Fig. 3 The early predictive model to identify the OSI-trajectory phenotypes related to the different prognoses. a Six distinctive characteristics 
of patients with worse prognosis (the high-level stable and ascending phenotypes) and better prognosis (the descending and low-level stable 
phenotypes) were selected using LASSO regression analysis. b, c MIMIC-IV and EICU-CRD database was used as training and validation group, 
respectively. The ROC curve, calibration curve and DCA analysis demonstrated that the predictive model exhibited strong ability of discrimination, 
calibration and clinical utilization. d The nomogram was plotted to better visualize our predictive model. OSI: oxygen saturation index; LASSO: The 
Least Absolute Shrinkage and Selection Operator; MIMIC-IV: the Medical Information Market for Intensive Care IV; EICU-CRD: the eICU Collaborative 
Research Database; ROC: receiver operating characteristic; DCA: decision curve analysis; BMI: body mass index; NMBAs: neuromuscular blockades; 
APS-III score: acute physiology score III
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Fig. 3 (See legend on previous page.)
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ARDS mediated the relationship between OSI phenotypes 
and ICU mortality
ARDS was a significant predictor of ICU mortality in 
patients with IMV in six models  (ORModel5: 1.456, 95% 
CI 1.199–1.768; Additional file  4: Table  S4). A causal 
mediation analysis showed that both indirect and direct 
effects were significantly associated with ICU mortal-
ity  (ORindirect: 1.027, 95% CI 1.016–1.041;  ORdirect: 1.195, 
95% CI 1.126–1.297, with 13.36% of the effects medi-
ated; Additional file  10: Fig. S9). However, over 80% 
of the effects of the OSI trajectories on ICU mortal-
ity in patients with IMV, rather than ARDS, remained 
unexplained.

Subgroup analysis
Various subgroup analyses were performed; the results 
are presented in Fig.  4 and Additional file  11: Fig. S10. 
Most subgroups, such as those based on age, plateau 
pressure, and dialysis therapy, showed a significant cor-
relation between dynamic OSI trajectories and ICU 
mortality. A predicted marginal effect analysis is shown 
in Additional file 12: Fig. S11. Patients with ARDS with 
the ascending and high-level stable phenotypes had 
higher mortality rates, but those with the descending and 

low-level stable phenotypes had similar mortality rates 
compared with patients without ARDS.

Discussion
To the best of our knowledge, this study was the first to 
demonstrate an association of dynamic OSI trajectories 
with ICU mortality in adult patients receiving IMV. The 
present study had three major findings. First, four differ-
ent phenotypes of the OSI trajectories were identified, 
and their association with ICU mortality was evaluated. 
Patients in the ICU with consistently high OSI values 
during the first 5 days of hospitalization tended to have 
higher mortality than those with consistently low OSI 
values using DR estimation. Second, the prognostic value 
of the OSI trajectories was validated, and the predictive 
model could help identify patients with worse prognoses 
in advance. Third, the effects of the OSI phenotypes on 
ICU mortality were partially mediated by ARDS.

The present study revealed heterogeneity among 
patients with mechanical ventilation through the forma-
tion of four distinct phenotypes based on dynamically 
monitored OSI values. In the present study, patients 
with the high-level stable or ascending phenotype were 
more likely to have a worse prognosis than those with 

P for interaction

0.716

0.082

0.232

0.739

0.736

0.312

0.777

0.075

0.333

0.569

0.965

phenotype 2 vs phenotype1 phenotype 3 vs phenotype1 phenotype 4 vs phenotype1Subgroup Number

age≤median 1528
age≥median 1850

female 1452
male 1926

without ARDS 1339

with ARDS 2039
PaCO2≤45 2031

PaCO2>45 1347
plateau pressure≤median 1650
plateau pressure>median 1728
tidal volume≤median 1667

tidal volume>median 1711

hemoglobin≤median 1633
hemoglobin>median 1745

APS-III score≤median 1721

APS-III score>median 1657
without dialysis therapy 2860
with dialysis therapy 518

without NMBAs therapy 2759

with NMBAs therapy 619

without vasopressor therapy 1601
with vasopressor therapy 1777

Fig. 4 The subgroup analysis of the association between OSI-trajectory based phenotypes and ICU mortality. Almost subgroups showed 
a significant correlation between the dynamic OSI trajectories and ICU mortality. ARDS: acute respiratory distress syndrome; APS-III score: Acute 
Physiology III score; NMBAs: neuromuscular blockades; OSI: oxygen saturation index
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the other phenotypes. Due to the retrospective nature of 
this study, determining the exact mechanisms underlying 
the observed results was difficult. However, patients with 
the high-level stable or ascending phenotype were more 
likely to experience hypoxemia and ventilator-induced 
lung injury (VILI), leading to higher mortality. The OSI 
was a composite index integrated with the MAP,  FiO2 
and  SaO2 that can potentially reflect the severity of VILI 
by measuring oxygen function and ventilation status. The 
MAP represented the mean alveolar pressure during both 
the inspiratory and expiratory cycles. High MAP could 
result in the overinflation of ventilated lung areas and the 
collapse of dead space, thus increasing mortality [61, 62]. 
In addition, overdistended alveoli caused by a high MAP 
could also obstruct venous return and may result in right 
heart dysfunction through cardiopulmonary interactions, 
which was consistent with a previous study [63–65]. The 
 FiO2/SpO2 ratio, a noninvasive indicator, is a good substi-
tute for the oxygenation index  (PaO2/FiO2 ratio) and can 
effectively identify critically ill patients in advance [66–
70]. Therefore, a lower OSI value could potentially reduce 
VILI. The present data also supported this finding, indi-
cating that the association between OSI values and mor-
tality was mediated by ARDS. Critically ill patients with 
ARDS experienced a decline in pulmonary compliance 
and an increase in nonaerated compartments, potentially 
making them more susceptible to VILI [71, 72]. Previous 
studies have also demonstrated that ARDS patients with 
higher OSI values exhibited higher mortality, which was 
further validated in the present study [5, 20, 73]. These 
findings confirmed that the OSI-based ventilation strat-
egy allowed for early detection and might potentially 
facilitate more intensive management of critically ill 
patients with a poor prognosis.

In the present study, the risk factors for the pheno-
types associated with high OSI values were explored and 
presented in a nomogram that could aid in tailoring the 
OSI value. For example,  PaCO2 level at baseline was a 
predictor for phenotypes with high OSI values. This sug-
gested that patients with hypercapnia are more suscepti-
ble to developing VILI, mediated by the OSI values. The 
potential mechanisms behind this could be attributed 
to the fact that the blockage or overdistention of alveoli 
in patients with hypercapnia could cause the instabil-
ity of pulmonary units and an imbalance in the ventila-
tion/blood flow ratio [74]. Further studies confirmed 
that hypercapnia was associated with mortality and 
that extracorporeal  CO2 removal treatment could cor-
rect hypercapnic acidosis, reduce ventilation days and 
facilitate pulmonary-protective ventilation [42, 75–77]. 
Therefore, strategies aimed at lowering the OSI value 
could potentially provide greater benefits to patients with 
hypercapnia.

In the present study, obesity was another important 
predictor of high OSI values. This result may partly be 
explained by the fact that patients with obesity experi-
ence more pressure on small airways, resulting in a rel-
atively high prevalence of complete airway closure than 
patients without obesity (approximately 65% vs 22% in a 
study by Coudroy et al.) [78, 79]. Complete airway closure 
could theoretically cause a ventilation perfusion ratio 
mismatch, accelerate alveolar collapse and impair arte-
rial oxygenation [80]. In addition, Gupta et  al. reported 
that obese patients with IMV treatment were more likely 
to have higher PEEP and plateau pressure, which might 
increase MAP values and thus cause high OSI values [81]. 
Nonetheless, the association between BMI and mortality 
in critically ill patients with IMV remains controversial. 
Recently, Ruan et  al. reported that BMI was negatively 
associated with mortality [82]. However, this study 
included patients using noninvasive ventilation (NIV) or 
high-flow nasal oxygen therapy (HFNC), who generally 
had a milder form of the disease compared with the tar-
get population in the present study. In contrast, a study 
by Chetboun et al. showed that BMI was associated with 
28-day mortality in critically ill patients with IMV treat-
ment [83]. Consequently, further research is required to 
investigate the associations between BMI and mortality 
in critically ill patients receiving IMV.

Our results highlighted the OSI-based dynamic tra-
jectory for the first time. This implied that monitoring a 
patient’s condition should not be confined solely to the 
initial 24 h postadmission. Instead, focusing on dynamic 
changes in relevant indicators is crucial. For example, 
the initial OSI value of the ascending phenotype was 
lower than that of the descending phenotype in the pre-
sent study. However, on the first day of admission, the 
OSI value of the ascending phenotype surpassed that 
of the descending phenotype and continued to exhibit 
this trend throughout the subsequent 4 days of observa-
tion. We could speculate that patients with the ascend-
ing phenotype had higher mortality than those with the 
descending phenotype when both patients were indi-
rectly compared with the low-level stable phenotype. 
Therefore, our study underlined the critical importance 
of longitudinal surveillance, which can assist clinicians in 
developing more accurate mechanical ventilation man-
agement strategies, potentially resulting in decreased 
ICU mortality rates.

Our study proposed a simple and user-friendly predic-
tion model of OSI-based phenotypes in evaluating the 
prognosis for critically ill patients with IMV treatment, 
which could potentially be of great benefit to assist ICU 
clinical decisions. This is not only useful in the clarifica-
tion of the patient’s condition to their family prior to the 
given treatment, but more importantly, it can serve as a 
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prompt biomarker to aid physicians in altering treatment 
plans during any stage of disease progression to optimize 
treatment benefits. For example, clinics are more likely 
to take more active interventions to reduce OSI-induced 
VILI for phenotypes with a poor prognosis, such as lower 
driving pressure, low tidal volume ventilation, PEEP titra-
tion or extracorporeal  CO2 removal according to their 
specific conditions. For ICU patients, whose health con-
dition might change abruptly, this improvement in care 
strategy could potentially be life-saving. However,  fur-
ther studies are needed to validate their safety and effects.

The present study had some limitations. First, although 
various statistical method was used to explore the asso-
ciation of OSI-trajectory phenotypes with ICU mortality, 
the potential confounding effect of several covariables 
(e.g., plateau pressure, NMBAs) could not be removed 
entirely. More prospective and rigorously designed stud-
ies  on this issue  are  still  needed  in the  future. Second, 
although the number of patients with the high-level 
stable phenotype met the criterion of at least 5%, the 
number of patients in each group was relatively small. 
Large-scale populations are needed to validate this asso-
ciation in future studies. Third, we were unable to iden-
tify the specific reasons leading to IMV due to the design 
of the database. Therefore, we could not perform sub-
group analyses on the causes of IMV (e.g., respiratory, 
cardiac, and cerebral). Fourth, as this was a retrospective 
observational study, the association between OSI-trajec-
tory phenotypes and ICU mortality could only be specu-
lated. Therefore, further prospective studies should be 
conducted to establish cause–effect relationships.

Conclusions
In our retrospective cohort study, four OSI-trajectory 
phenotypes were identified. The high-level stable and 
ascending phenotypes were associated with higher mor-
tality than the low-level stable and descending pheno-
types in ICU patients with IMV treatment within the first 
5 days after admission. These four phenotypes could help 
identify patients with poor prognoses in advance, provid-
ing valuable insights for clinical practice.

Abbreviations
ACME  Average causal mediation effect
ADE  Average direct effect
APS-III  Acute Physiology III score
ARDS  Acute respiratory distress syndrome
AUC   Area under the curve
BIC  Bayesian information criterion
BMI  Body mass index
CI  Confidence interval
eICU-CRD  EICU Collaborative Research Database
GBTM  Group-based trajectory model
HFNC  High-flow nasal cannula
ICU  Intensive care unit
IMV  Invasive mechanical ventilation

IPTW  Inverse probability of treatment weighting
LASSO  Least Absolute Shrinkage and Selection Operator
MAP  Mean airway pressure
MIMIC-IV  Medical Information Market for Intensive Care IV
NMBAs  Neuromuscular blockades
OI  Oxygen index
OR  Odds ratio
OSI  Oxygen saturation index
PEEP  Positive end-expiratory pressure
SMD  Standardized mean difference
SMOTE  Synthetic Minority Over-sampling Technique
SOFA  Sequential Organ Failure Assessment score
VFDs  Ventilation-free days
XGBoost  Extreme Gradient Boosting

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40560- 023- 00707-x.

Additional file 1: Figure S1. The percentage of missing values among 
variables. PEEP: positive end expiratory pressure; MIMIC-IV: the Medical 
Information Market for Intensive Care IV; EICU-CRD: the eICU Collaborative 
Research Database.

Additional file 2: Figure S2. The DAGs showed covariates of the associa-
tion between the OSI-based trajectory phenotypes and ICU mortality. 
The demographics included age, gender and ethnicity. The respiratory 
comorbidities included ARDS, COPD. Other comorbidities included CKD, 
AKI, malignancy, HF and diabetes.  PaCO2 and hemoglobin were included 
in the laboratory events. The ventilation parameters included PEEP, plateau 
pressure, tidal volume, OSI at baseline and the treatment included dialysis, 
NMBAs and vasopressor therapy. DAGs: Directed acyclic graphs; BMI: body 
mass index; OSI: oxygen saturation index; PEEP: positive end expiratory 
pressure; NMBAs: neuromuscular blockades; APS-III score: acute physiol-
ogy score III; ARDS: acute respiratory distress syndrome; AKI: acute kidney 
injury; COPD: chronic obstructive pulmonary disease; HF: heart failure; 
CKD: chronic kidney disease.

Additional file 3: Figure S3. Flowchart of patient enrollment and statisti-
cal analysis. After application of exclusion criteria, a total of 3378 patients 
were included into further analysis. The best number of phenotypes were 
determined first by GBTM method. After comparison of characteristics 
of each phenotype with standard statistical method, the association of 
OSI-trajectory phenotypes with ICU mortality were explored using DR 
estimation. After that, the risk factors of OSI-trajectory phenotypes with a 
poor prognosis were determined by the SMOTE algorithm and predictive 
model. CMA analysis was used to determine the casual mediation effect 
of ARDS on the prognostic value of OSI-trajectory phenotypes. Subgroup 
analysis and predictive marginal effect analysis was used to validate the 
robustness of prognostic value of OSI-trajectory phenotypes. Kaplan–
Meier analysis was used to explore the prognostic value of OSI-trajectory 
phenotypes on long-term outcomes. MIMIC-IV: the Medical Information 
Market for Intensive Care IV; EICU-CRD: the eICU Collaborative Research 
Database; OSI: oxygen saturation index; CMA: causal mediation analysis; 
ARDS: acute respiratory distress syndrome; GBTM: group based trajectory 
model; MAP: mean airway pressure; SMOTE: synthetic minority oversam-
pling technique.

Additional file 4: Table S1. Results of group-based trajectory modeling. 
Table S2. The analysis of optimal trend for trajectories. Table S3. Results 
of doubly robust estimation of two databases. Table S4. The associations 
between ARDS and ICU mortality.

Additional file 5: Figure S4. The loveplot of covariables. The SMD gener-
ated by IPTW (logistic) or IPTW (Xgboost) were significantly smaller than 
the SMD in crude covariables. SMD: standardized mean difference; OSI: 
oxygen saturation index; PEEP: positive end expiratory pressure; NMBAs: 
neuromuscular blockades; APS: acute physiology score III; ARDS: acute 
respiratory distress syndrome; AKI: acute kidney injury; BMI: body mass 
index; HB: hemoglobin; COPD: chronic obstructive pulmonary disease; HF: 
heart failure; CKD: chronic kidney disease.

https://doi.org/10.1186/s40560-023-00707-x
https://doi.org/10.1186/s40560-023-00707-x


Page 12 of 14Shi et al. Journal of Intensive Care           (2023) 11:59 

Additional file 6: Figure S5. The comparison of ICU mortality (a) and 
VFDs (b) among four phenotypes in two datasets. IPTW: inverse probabil-
ity of treatment weighting; MIMIC-IV: the Medical Information Market for 
Intensive Care IV; EICU-CRD: the eICU Collaborative Research Database.

Additional file 7: Figure S6. The Kaplan–Meier survival curve of 
21d-mortality in crude data. The survival rate of patients in group 4 (high-
level stable) were significantly lower than other groups.

Additional file 8: Figure S7. The Kaplan–Meier survival curve of 21d-mor-
tality using IPTW method by multinomial logistic regression. The survival 
rate of patients in group 4 (high-level stable) were significantly lower than 
other groups.

Additional file 9: Figure S8. The Kaplan–Meier survival curve of 21d-mor-
tality using IPTW method by Xgboost. The survival rate of patients in 
group 4 (high-level stable) were significantly lower than other groups.

Additional file 10: Figure S9. ARDS mediates about 13.36% effect of OSI 
trajectory index on ICU mortality. OSI: oxygen saturation index.

Additional file 11: Figure S10. The subgroup analysis of the associa-
tion between OSI-trajectory based phenotypes and ICU mortality. COPD: 
chronic obstructive pulmonary disease; CKD: chronic kidney disease; AKI: 
acute kidney injury

Additional file 12: Figure S11. The predictive marginal effect of ARDS on 
ICU mortality in patients with or without ARDS. ARDS: acute respiratory 
distress syndrome; OSI: oxygen saturation index.

Acknowledgements
We thank Helixlife for the professional English language polishing.

Author contributions
X.S. and J.Y. designed the study, wrote the manuscript and were responsible 
for the content. Y.S. and J.Y. extracted the data and conducted the statistical 
analysis. H.C. checked the tables and figures. L.F. and K.N. reviewed the data 
and revised the manuscript. All authors made contributions to this work and 
agreed to publish the final version.

Funding
J.Y. received funding from Zhejiang Provincial Program for the Cultivation of 
High-Level Innovative Health Talents and the institution of Chinese medicine 
for respiratory disease of Zhejiang Chinese Medical University. X.S. received 
Zhejiang Chinese Medical University Postgraduate Scientific Research Fund 
Project (No. Y202351269).

Availability of data and materials
All data used in our study could be available in the MIMIC-IV (https:// physi 
onet. org/ conte nt/ mimic iv/2. 0/) and EICU-CRD database (https:// physi onet. 
org/ conte nt/ eicu- crd/2. 0/).

Declarations

Ethics approval and consent to participate
The establishment and initial data collection of this database was authorized 
by the Massachusetts Institute of Technology (Cambridge, MA) and Beth Israel 
Deaconess Medical Center (Boston, MA). The Ethics Committee of the First 
Affiliated Hospital of Zhejiang Chinese Medical University provided ethics 
approval of this work (No. 2023-KLS-173-01).

Consent for publication
Not applicable

Competing interests
Our authors declare no competing interests.

Author details
1 Zhejiang Chinese Medical University, Hangzhou, China. 2 School of Chinese 
Medicine, Hong Kong Baptist University, Hong Kong, China. 3 The First Affili-
ated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, 

Shangcheng District, Hangzhou 310006, Zhejiang, China. 4 Longhua Hospital, 
Shanghai University of Traditional Chinese Medicine, Shanghai, China. 

Received: 27 July 2023   Accepted: 15 November 2023

References
 1. de Oliveira TF, Peringer VS, Forgiarini Junior LA, Eibel B. PEEP-ZEEP com-

pared with bag squeezing and chest compression in mechanically venti-
lated cardiac patients: randomized crossover clinical trial. Int J Environ Res 
Public Health. 2023;20(4):2824.

 2. Yasuda H, Okano H, Mayumi T, Narita C, Onodera Y, Nakane M, et al. 
Post-extubation oxygenation strategies in acute respiratory failure: a 
systematic review and network meta-analysis. Crit Care. 2021;25(1):135.

 3. Mehta AB, Syeda SN, Wiener RS, Walkey AJ. Epidemiological trends in 
invasive mechanical ventilation in the United States: a population-based 
study. J Crit Care. 2015;30(6):1217–21.

 4. Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Bro-
chard L, et al. Evolution of mechanical ventilation in response to clinical 
research. Am J Respir Crit Care Med. 2008;177(2):170–7.

 5. Neto AS, Barbas CSV, Simonis FD, Artigas-Raventós A, Canet J, Determann 
RM, et al. Epidemiological characteristics, practice of ventilation, and 
clinical outcome in patients at risk of acute respiratory distress syndrome 
in intensive care units from 16 countries (PRoVENT): an international, 
multicentre, prospective study. Lancet Respir Med. 2016;4(11):882–93.

 6. Behrendt CE. Acute respiratory failure in the United States: incidence and 
31-day survival. Chest. 2000;118(4):1100–5.

 7. Su L, Zhang Z, Zheng F, Pan P, Hong N, Liu C, et al. Five novel clinical pheno-
types for critically ill patients with mechanical ventilation in intensive care 
units: a retrospective and multi database study. Respir Res. 2020;21(1):325.

 8. Wells HJ, Raithatha M, Elhag S, Turner J, Osuri P, Kannan S. Impact of full 
personal protective equipment on alertness of healthcare workers: a 
prospective study. BMJ Open Qual. 2022;11(1):1–5.

 9. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld 
DA, et al. Driving pressure and survival in the acute respiratory distress 
syndrome. N Engl J Med. 2015;372(8):747–55.

 10. Costa ELV, Slutsky AS, Brochard LJ, Brower R, Serpa-Neto A, Cavalcanti 
AB, et al. Ventilatory variables and mechanical power in patients 
with acute respiratory distress syndrome. Am J Respir Crit Care Med. 
2021;204(3):303–11.

 11. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiol-
ogy, patterns of care, and mortality for patients with acute respira-
tory distress syndrome in intensive care units in 50 countries. JAMA. 
2016;315(8):788–800.

 12. Tawfik P, Syed MKH, Elmufdi FS, Evans MD, Dries DJ, Marini JJ. Static and 
dynamic measurements of compliance and driving pressure: a pilot 
study. Front Physiol. 2022;13:1–8.

 13. Balzer F, Menk M, Ziegler J, Pille C, Wernecke KD, Spies C, et al. Predictors 
of survival in critically ill patients with acute respiratory distress syndrome 
(ARDS): an observational study. BMC Anesthesiol. 2016;16(1):108.

 14. Trachsel D, McCrindle BW, Nakagawa S, Bohn D. Oxygenation index pre-
dicts outcome in children with acute hypoxemic respiratory failure. Am J 
Respir Crit Care Med. 2005;172(2):206–11.

 15. Konduri GG, Solimano A, Sokol GM, Singer J, Ehrenkranz RA, Singhal N, 
et al. A randomized trial of early versus standard inhaled nitric oxide 
therapy in term and near-term newborn infants with hypoxic respiratory 
failure. Pediatrics. 2004;113(3):559–64.

 16. Khemani RG, Thomas NJ, Venkatachalam V, Scimeme JP, Berutti T, 
Schneider JB, et al. Comparison of SpO2 to PaO2 based markers of 
lung disease severity for children with acute lung injury. Crit Care Med. 
2012;40(4):1309–16.

 17. Willson DF, Thomas NJ, Markovitz BP, Bauman LA, DiCarlo JV, Pon S, et al. 
Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: 
a randomized controlled trial. JAMA. 2005;293(4):470–6.

 18. Ghuman AK, Newth CJ, Khemani RG. The association between the end 
tidal alveolar dead space fraction and mortality in pediatric acute hypox-
emic respiratory failure. Pediatr Crit Care Med. 2012;13(1):11–5.

https://physionet.org/content/mimiciv/2.0/
https://physionet.org/content/mimiciv/2.0/
https://physionet.org/content/eicu-crd/2.0/
https://physionet.org/content/eicu-crd/2.0/


Page 13 of 14Shi et al. Journal of Intensive Care           (2023) 11:59  

 19. DesPrez K, McNeil JB, Wang C, Bastarache JA, Shaver CM, Ware LB. 
Oxygenation saturation index predicts clinical outcomes in ARDS. Chest. 
2017;152(6):1151–8.

 20. Chen WL, Lin WT, Kung SC, Lai CC, Chao CM. The Value of oxygenation 
saturation index in predicting the outcomes of patients with acute 
respiratory distress syndrome. J Clin Med. 2018;7(8):205.

 21. Hong Y, Chen L, Pan Q, Ge H, Xing L, Zhang Z. Individualized Mechanical 
power-based ventilation strategy for acute respiratory failure formalized 
by finite mixture modeling and dynamic treatment regimen. EClinical-
Medicine. 2021;36:1–10.

 22. Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al. 
MIMIC-IV, a freely accessible electronic health record dataset. Sci Data. 
2023;10(1):1.

 23. Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU 
collaborative research database, a freely available multi-center database 
for critical care research. Sci Data. 2018;5:1–13.

 24. Weiss JW, Peters D, Yang X, Petrik A, Smith DH, Johnson ES, et al. Systolic 
BP and mortality in older adults with CKD. Clin J Am Soc Nephrol. 
2015;10(9):1553–9.

 25. Michel P, Baumstarck K, Auquier P, Amador X, Dumas R, Fernandez J, 
et al. Psychometric properties of the abbreviated version of the Scale to 
Assess Unawareness in Mental Disorder in schizophrenia. BMC Psychiatry. 
2013;13:229.

 26. Jiang X, Wang Y, Pan Y, Zhang W. Prediction models for sepsis-associated 
thrombocytopenia risk in intensive care units based on a machine learn-
ing algorithm. Front Med (Lausanne). 2022;9:1–10.

 27. Heldmann P, Werner C, Belala N, Bauer JM, Hauer K. Early inpatient reha-
bilitation for acutely hospitalized older patients: a systematic review of 
outcome measures. BMC Geriatr. 2019;19(1):189.

 28. Pedersen AB, Mikkelsen EM, Cronin-Fenton D, Kristensen NR, Pham TM, 
Pedersen L, et al. Missing data and multiple imputation in clinical epide-
miological research. Clin Epidemiol. 2017;9:157–66.

 29. de Goeij MC, van Diepen M, Jager KJ, Tripepi G, Zoccali C, Dekker FW. 
Multiple imputation: dealing with missing data. Nephrol Dial Transplant. 
2013;28(10):2415–20.

 30. Korevaar TIM, Derakhshan A, Taylor PN, et al. Association of thyroid func-
tion test abnormalities and thyroid autoimmunity with preterm birth. 
JAMA. 2019;322(7):632–41.

 31. Allotey J, Fernandez-Felix BM, Zamora J, et al. Predicting seizures in 
pregnant women with epilepsy: development and external validation of 
a prognostic model. Plos Med. 2019;16(5):1–18.

 32. White IR, Royston P, Wood AM. Multiple imputation using chained equa-
tions: issues and guidance for practice. Stat Med. 2011;30(4):377–99.

 33. Rubin DB, Schenker N. Multiple imputation in health-care databases: an 
overview and some applications. Stat Med. 1991;10(4):585–98.

 34. Nagin DS, Odgers CL. Group-based trajectory modeling in clinical 
research. Annu Rev Clin Psycho. 2010;6:109–38.

 35. Zilberberg MD, Nathanson BH, Ways J, Shorr AF. Characteristics, hospital 
course, and outcomes of patients requiring prolonged acute versus 
short-term mechanical ventilation in the United States 2014–2018. Crit 
Care Med. 2020;48(11):1587–94.

 36. Robins JM, Hernán MA, Brumback B. Marginal structural models and 
causal inference in epidemiology. Epidemiology. 2000;11(5):550–60.

 37. Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowl-
edge as a prerequisite for confounding evaluation: an application to birth 
defects epidemiology. Am J Epidemiol. 2002;155(2):176–84.

 38. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic 
research. Epidemiology. 1999;10(1):37–48.

 39. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. 
Baseline characteristics and outcomes of 1591 patients infected with 
SARS-CoV-2 admitted to ICUs of the Lombardy Region. Italy JAMA. 
2020;323(16):1574–81.

 40. Lee J. Age, sex, and race/ethnicity in clinical outcomes among patients 
hospitalized with COVID-19, 2020. Front Med (Lausanne). 2022;9:1–10.

 41. Martino JL, Stapleton RD, Wang M, Day AG, Cahill NE, Dixon AE, 
et al. Extreme obesity and outcomes in critically ill patients. Chest. 
2011;140(5):1198–206.

 42. Maamar A, Delamaire F, Reizine F, Lesouhaitier M, Painvin B, Quelven Q, 
et al. Impact of arterial CO2 retention in patients with moderate or severe 
ARDS. Respir Care. 2023;68(5):582–91.

 43. Adams M, Dean P, Doherty P, Noble S, Mackay A. Haemoglobin con-
centration on admission to intensive care influences hospital mortality 
rates and length of stay: a retrospective study. Crit Care. 2013;17(Suppl 
2):353.

 44. Doher MP, Torres de Carvalho FR, Scherer PF, Matsui TN, Ammirati AL, 
Caldin da Silva B, et al. Acute kidney injury and renal replacement 
therapy in critically ill COVID-19 patients: risk factors and outcomes: a 
single-center experience in Brazil. Blood Purif. 2021;50(4–5):520–30.

 45. Klonoff DC, Messler JC, Umpierrez GE, Peng L, Booth R, Crowe J, et al. 
Association between achieving inpatient glycemic control and clinical 
outcomes in hospitalized patients with COVID-19: a multicenter, retro-
spective hospital-based analysis. Diabetes Care. 2021;44(2):578–85.

 46. Ozturk S, Turgutalp K, Arici M, Odabas AR, Altiparmak MR, Aydin Z, et al. 
Mortality analysis of COVID-19 infection in chronic kidney disease, 
haemodialysis and renal transplant patients compared with patients 
without kidney disease: a nationwide analysis from Turkey. Nephrol 
Dial Transplant. 2020;35(12):2083–95.

 47. Villar J, González-Martín JM, Hernández-González J, Armengol MA, 
Fernández C, Martín-Rodríguez C, et al. Predicting ICU mortality in 
acute respiratory distress syndrome patients using machine learning: 
the predicting outcome and STratifiCation of severity in ARDS (POST-
CARDS) Study. Crit Care Med. 2023;51:1–12.

 48. Ostermann M, Chang R. Correlation between the AKI classification and 
outcome. Crit Care. 2008;12(6):1–10.

 49. Grotberg JC, Reynolds D, Kraft BD. Management of severe acute res-
piratory distress syndrome: a primer. Crit Care. 2023;27(1):289.

 50. Almekhlafi GA, Albarrak MM, Mandourah Y, Hassan S, Alwan A, Abu-
dayah A, et al. Presentation and outcome of Middle East respiratory 
syndrome in Saudi intensive care unit patients. Crit Care. 2016;20(1):123.

 51. Chang W, Sun Q, Peng F, Xie J, Qiu H, Yang Y. Validation of neuromuscular 
blocking agent use in acute respiratory distress syndrome: a meta-analy-
sis of randomized trials. Crit Care. 2020;24(1):54.

 52. Lertjitbanjong P, Thongprayoon C, Cheungpasitporn W, O’Corragain OA, 
Srivali N, Bathini T, et al. Acute kidney injury after lung transplantation: a 
systematic review and meta-analysis. J Clin Med. 2019;8(10):1713.

 53. Xiao W, Lu Z, Liu Y, Hua T, Zhang J, Hu J, et al. Influence of the initial neu-
trophils to lymphocytes and platelets ratio on the incidence and severity 
of sepsis-associated acute kidney injury: a double robust estimation 
based on a large public database. Front Immunol. 2022;13:1–14.

 54. Zhang L, Xu F, Han D, Huang T, Li S, Yin H, et al. Influence of the trajectory 
of the urine output for 24 h on the occurrence of AKI in patients with 
sepsis in intensive care unit. J Transl Med. 2021;19(1):518.

 55. Kuramatsu JB, Biffi A, Gerner ST, Sembill JA, Sprügel MI, Leasure A, et al. 
Association of surgical hematoma evacuation vs conservative treatment 
with functional outcome in patients with cerebellar intracerebral hemor-
rhage. JAMA. 2019;322(14):1392–403.

 56. Li X, Shen C. Doubly robust estimation of causal effect: upping the 
odds of getting the right answers. Circ Cardiovasc Qual Outcomes. 
2020;13(1):1–7.

 57. Funk MJ, Westreich D, Wiesen C, Stürmer T, Brookhart MA, David-
ian M. Doubly robust estimation of causal effects. Am J Epidemiol. 
2011;173(7):761–7.

 58. Chen B, Ruan L, Yang L, Zhang Y, Lu Y, Sang Y, et al. Machine learning 
improves risk stratification of coronary heart disease and stroke. Ann 
Transl Med. 2022;10(21):1156.

 59. Imai K, Keele L, Yamamoto T. Identification, inference and sensitivity 
analysis for causal mediation effects. Stat Sci. 2010;25(1):51–71.

 60. Zhang Z, Zheng C, Kim C, Van Poucke S, Lin S, Lan P. Causal mediation 
analysis in the context of clinical research. Ann Transl Med. 2016;4(21):425.

 61. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet J-F, Eisner MD, et al. 
Pulmonary dead-space fraction as a risk factor for death in the acute 
respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–6.

 62. Freebairn RC. What do mean airway pressures mean? Crit Care Med. 
2020;48(5):767–9.

 63. Long Y, Su L, Zhang Q, Zhou X, Wang H, Cui N, et al. Elevated mean airway 
pressure and central venous pressure in the first day of mechanical venti-
lation indicated poor outcome. Crit Care Med. 2017;45(5):e485–92.

 64. Sahetya SK, Wu TD, Morgan B, Herrera P, Roldan R, Paz E, et al. Mean 
airway pressure as a predictor of 90-day mortality in mechanically venti-
lated patients. Crit Care Med. 2020;48(5):688–95.



Page 14 of 14Shi et al. Journal of Intensive Care           (2023) 11:59 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 65. Su L, Pan P, Liu D, Long Y. Mean airway pressure has the potential to 
become the core pressure indicator of mechanical ventilation: raising to 
the front from behind the clinical scenes. J Intensive Med. 2021;1(2):96–8.

 66. Sanz F, Dean N, Dickerson J, Jones B, Knox D, Fernández-Fabrellas E et al. 
Accuracy of PaO2/FiO2 calculated from SpO2 for severity assessment in 
ED patients with pneumonia. Respirology. 2015;20(5):813–8.

 67. Khemani RG, Rubin S, Belani S, Leung D, Erickson S, Smith LS, et al. Pulse 
oximetry vs. PaO2 metrics in mechanically ventilated children: Berlin defi-
nition of ARDS and mortality risk. Intensive Care Med. 2015;41(1):94–102.

 68. Festic E, Bansal V, Kor DJ, Gajic O, US Critical Illness and Injury Trials Group: 
Lung Injury Prevention Study Investigators (USCIITG–LIPS). SpO2/FiO2 
ratio on hospital admission is an indicator of early acute respiratory 
distress syndrome development among patients at risk. J Intensive Care 
Med. 2015;30(4):209–16.

 69. Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB, 
et al. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in 
patients with acute lung injury or ARDS. Chest. 2007;132(2):410–7.

 70. Martín-Rodríguez F, López-Izquierdo R, Del Pozo VC, Delgado-Benito JF, 
Ortega GJ, Castro Villamor MA, et al. Association of prehospital oxygen 
saturation to inspired oxygen ratio with 1-, 2-, and 7-day mortality. JAMA 
Netw Open. 2021;4(4):1–12.

 71. Rezoagli E, Laffey JG, Bellani G. Monitoring lung injury severity and 
ventilation intensity during mechanical ventilation. Semin Respir Crit Care 
Med. 2022;43(3):346–68.

 72. Shah N, Katira BH. Role of cardiopulmonary interactions in development 
of ventilator-induced lung injury-Experimental evidence and clinical 
Implications. Front Physiol. 2023;14:1–7.

 73. Esteban A, Anzueto A, Frutos F, Alía I, Brochard L, Stewart TE, et al. Charac-
teristics and outcomes in adult patients receiving mechanical ventilation: 
a 28-day international study. JAMA. 2002;287(3):345–55.

 74. Gattinoni L, Coppola S, Camporota L. Physiology of extracorporeal CO2 
removal. Intensive Care Med. 2022;48(10):1322–5.

 75. Dianti J, Fard S, Wong J, Chan TCY, Del Sorbo L, Fan E, et al. Strategies for 
lung- and diaphragm-protective ventilation in acute hypoxemic respira-
tory failure: a physiological trial. Crit Care. 2022;26(1):259.

 76. Combes A, Schmidt M, Hodgson CL, Fan E, Ferguson ND, Fraser JF, et al. 
Extracorporeal life support for adults with acute respiratory distress 
syndrome. Intensive Care Med. 2020;46(12):2464–76.

 77. Tiruvoipati R, Akkanti B, Dinh K, Barrett N, May A, Kimmel J, et al. Extracor-
poreal carbon dioxide removal with the hemolung in patients with acute 
respiratory failure: a multicenter retrospective cohort study. Crit Care 
Med. 2023;51(7):892–902.

 78. Chiumello D, Colombo A, Algieri I, Mietto C, Carlesso E, Crimella F, et al. 
Effect of body mass index in acute respiratory distress syndrome. Br J 
Anaesth. 2016;116(1):113–21.

 79. Coudroy R, Vimpere D, Aissaoui N, Younan R, Bailleul C, Couteau-Chardon 
A, et al. Prevalence of complete airway closure according to body 
mass index in acute respiratory distress syndrome. Anesthesiology. 
2020;133(4):867–78.

 80. Hedenstierna G, Chen L, Brochard L. Airway closure, more harmful than 
atelectasis in intensive care? Intensive Care Med. 2020;46(12):2373–6.

 81. Gupta E, Hossen S, Grigsby MR, Herrera P, Roldan R, Paz E, et al. Risk factors 
for the development of acute respiratory distress syndrome in mechani-
cally ventilated adults in Peru: a multicenter observational study. Crit 
Care. 2019;23(1):398.

 82. Ruan H, Li S-S, Zhang Q, Ran X. Elevated MMP-8 levels, inversely associ-
ated with BMI, predict mortality in mechanically ventilated patients: an 
observational multicenter study. Crit Care. 2023;27(1):290.

 83. Chetboun M, Raverdy V, Labreuche J, Simonnet A, Wallet F, Caussy C, et al. 
BMI and pneumonia outcomes in critically ill covid-19 patients: an inter-
national multicenter study. Obesity (Silver Spring). 2021;29(9):1477–86.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Prognostic value of oxygen saturation index trajectory phenotypes on ICU mortality in mechanically ventilated patients: a multi-database retrospective cohort study
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Data source and study population
	Patient characteristics and outcomes
	Management of missing data
	Group-based trajectory model
	Directed acyclic graphs
	Doubly robust estimation
	Statistical analysis

	Results
	The OSI trajectories and baseline characteristics
	Associations between the OSI trajectories and ICU mortality
	Prognostic value of OSI trajectories for 21-day ICU mortality
	ARDS mediated the relationship between OSI phenotypes and ICU mortality
	Subgroup analysis

	Discussion
	Conclusions
	Anchor 24
	Acknowledgements
	References


