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Abstract 

Background This study aimed to apply the backpropagation neural network (BPNN) to develop a model for predict-
ing multidrug-resistant organism (MDRO) infection in critically ill patients.

Methods This study collected patient information admitted to the intensive care unit (ICU) of the Affiliated Hospital 
of Qingdao University from August 2021 to January 2022. All patients enrolled were divided randomly into a training 
set (80%) and a test set (20%). The least absolute shrinkage and selection operator and stepwise regression analysis 
were used to determine the independent risk factors for MDRO infection. A BPNN model was constructed based 
on these factors. Then, we externally validated this model in patients from May 2022 to July 2022 over the same 
center. The model performance was evaluated by the calibration curve, the area under the curve (AUC), sensitivity, 
specificity, and accuracy.

Results In the primary cohort, 688 patients were enrolled, including 109 (15.84%) MDRO infection patients. Risk fac-
tors for MDRO infection, as determined by the primary cohort, included length of hospitalization, length of ICU stay, 
long-term bed rest, antibiotics use before ICU, acute physiology and chronic health evaluation II, invasive operation 
before ICU, quantity of antibiotics, chronic lung disease, and hypoproteinemia. There were 238 patients in the vali-
dation set, including 31 (13.03%) MDRO infection patients. This BPNN model yielded good calibration. The AUC 
of the training set, the test set and the validation set were 0.889 (95% CI 0.852–0.925), 0.919 (95% CI 0.856–0.983), 
and 0.811 (95% CI 0.731–0.891), respectively.

Conclusions This study confirmed nine independent risk factors for MDRO infection. The BPNN model performed 
well and was potentially used to predict MDRO infection in ICU patients.
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Introduction
Multidrug-resistant organism (MDRO) are bacteria 
simultaneously resistant to three or more different anti-
biotics. The infection caused by such bacteria is called 
MDRO infection [1]. Intensive care unit (ICU) patients 
are in critical condition and require various invasive pro-
cedures [2]. Thus, ICU is deemed the hardest-hit area for 
MDRO infection in hospitals [3]. Approximately 50% of 
ICU patients in developing countries suffer from at least 
one hospital-acquired infection; the corresponding rate 
for developed countries is 25% [4]. Antibiotic abuse and 
bacterial mutation have increased the number of MDRO 
and drug resistance [5]. The World Health Organization 
stated that bacterial resistance can cause a massive bur-
den of disease, including social expenditure and medi-
cal expenditure, and will lead to a decline in global gross 
domestic product of 1.40–1.60% [6]. The result of a mul-
ticenter prospective cohort study showed that the 30-day 
mortality of patients infected with Carbapenem-resist-
ant Klebsiella pneumoniae in China, the United States, 
and South America were 12.00%, 23.00%, and 28.00%, 
respectively [7]. However, there is no specific therapy for 
MDRO infection.

The risk of MDRO infection is early predicted for 
patients, and appropriate interventions are taken in 
time, the MDRO colonization rate of ICU patients can 
be effectively reduced, and reduce the chance of self-
infection and cross-infection between patients and 
healthcare workers [8]. However, the drug sensitivity test 
and microbial culture results need 24 to 72 h to obtain, 
resulting in a "lag" in determining the infection status of 
patients. Given the potential benefits of predictive mod-
els in MDRO, many researchers have developed vari-
ous models based on logistic regression (LR) to predict 
the risk of MDRO infection [9–11]. Fortunately, LR has 
the following shortcomings: LR requires a specific linear 
relationship between the independent and transformed 
dependent variables. Moreover, the LR model lacked the 
ability for self-learning and iteration. Once the time and 
population characteristics changed, the model tended to 
underperform [12].

The backpropagation neural network (BPNN), one of 
the most widely used deep learning methods, is a mul-
tilayer forward neural network trained according to the 
error backpropagation algorithm [13]. Compared with 
traditional LR, the advantage of BPNN is no need for 
prior knowledge of the mapping relationship between 
independent and dependent variables. As long as suffi-
cient samples are provided for training, it can complete 
the nonlinear mapping from input to output variables. 
BPNN can accept all kinds of independent variables 
simultaneously without any form of variable transforma-
tion, which preserves data information to the greatest 

extent [14]. In addition, BPNN has strong self-learning 
and adaptive ability and constantly updates and improves 
its performance in the use process [12]. The BPNN model 
has been used to construct disease diagnosis and prog-
nosis prediction models and achieved sound predic-
tion effects [15, 16]. Nevertheless, as far as we know, no 
study has used it to predict the risk of MDRO infection in 
ICU patients. Therefore, this study aims to establish the 
MDRO infection model through BPNN, which identifies 
high-risk factors and high-risk groups of MDRO infec-
tion early and guides the implementation of interven-
tions to reduce the incidence of MDRO infection in ICU 
patients.

Methods
Study population
We retrospectively collected data from patients who 
received treatment in the ICU of the Affiliated Hos-
pital of Qingdao University from July 2021 to Janu-
ary 2022. The primary cohort enrolled 688 critically ill 
patients. For external validation, patients in the same 
study center from May 2022 to July 2022 were selected in 
the validation set.

All adults (aged ≥ 18  years and ≥ one-time microbial 
culture performed during ICU hospitalization) in ICU 
were enrolled in this study. Patients who died or left 
the ICU within 48  h, had incomplete case data or were 
diagnosed with MDRO infection prior to ICU admission 
were excluded. Only the first admission was included for 
analysis for patients with multiple ICU admissions dur-
ing hospitalization.

This study has obtained the approval of the Ethics 
Committee of Qingdao University Medicine (QDU-
HEC-2021173). As this study was retrospective and data 
were anonymized, informed consent was waived.

Data collection
We obtained patient information through hospital infec-
tion surveillance and electronic medical records sys-
tems. Initial candidate factors may be associated with 
MDRO infections, including general data, invasive pro-
cedures, medication, laboratory indicators, and the 
scores.  General data  included gender, age, body mass 
index, length of hospitalization, length of ICU stay, 
and comorbid diseases (including diabetes, hyperten-
sion, chronic lung disease, liver disease, chronic renal 
disease, congestive heart failure, and cerebrovascular 
disease).  Invasive procedures  included surgical situa-
tions, mechanical ventilation, central venous catheters, 
gastrointestinal decompression, peripherally inserted 
central venous catheters, extracorporeal membrane 
oxygenation, urinary tube, and other drainage tubes in 
ICU.  Medication  included antibiotic use, hormone, and 
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nutritional support therapy during ICU. Laboratory indi-
cators included albumin, prealbumin, C-reactive protein, 
procalcitonin, white blood cells, blood–urea–nitrogen, 
and creatinine within the first 24 h of their ICU stay. The 
scores  included the APACHE II score, Glasgow coma 
scale, and nutrition risk screening (NRS)-2002 score 
within 24 h of admission in the ICU. The diagnosis of the 
combined disease was as per the International Classifica-
tion of disease-10 code [17].

This study obtained specimens for microbiologic cul-
tures from blood, urine, sputum, pus, drainage fluid, and 
secretions. VITEK2 Compact System automatic micro-
bial identification and drug sensitivity analysis system 
were used for culture identification of strains, and the 
Kirby Bauer paper diffusion method was applied to the 
drug sensitivity test of strains. The definition of MDRO 
was based on the provisional standard definition of 
MDRO published by Magiorakos and other experts [18]. 
Long-term bed rest refers to being bedridden for 15 days 
at least, and more than 90% of the time in bed within 1 
day. The surgical situation included the grading of the 
operation, the classification of incision, and the healing of 
the incision.

Screening for risk factors
Patients were categorized into MDRO-infected and non-
MDRO-infected groups in accordance with the presence 
or absence of MDRO infection during the ICU. We com-
bined Lasso and stepwise regression to screen risk fac-
tors. Lasso regression used tenfold cross validation to 
select the optimal penalty coefficient (lambda). The vari-
ables whose coefficients were not zero had a significant 
relationship with the dependent variable and were pre-
served [19]. Lasso can avoid adding too many independ-
ent variables into the BPNN model, thereby reducing the 
network’s complexity and computation and improving 
the model’s prediction accuracy. Then, stepwise regres-
sion was applied to further select the optimal combi-
nation of independent variables. This method was the 
introduction of variables one after the other. After intro-
ducing a new variable, the old variables that had been 
selected in the regression model were tested one by one, 
and the variables that were not meaningful were deleted 
[20]. This process continued until no new variables were 
introduced and no old variables were deleted. Variables 
with bilateral P < 0.05 were identified as independent risk 
factors for MDRO infection.

Development and validation of the BPNN model
These confirmed independent risk factors for MDRO 
infection were used as input variables to construct a 
BPNN model. The BPNN algorithm employed gradient 
descent to continuously adjust the weights and thresholds 

among layers through backpropagation to minimize the 
sum of error squares of the network [21].

These data of the primary cohort were randomly 
divided into a training set and a test set in an 8:2 ratio, 
where the training set was utilized to construct the 
model, and the test set was utilized to evaluate the 
model’s ability to discriminate new samples. To further 
evaluate the generalization ability and universality of 
the model, external validation was performed by period 
validation, that is, patients from the same study center 
at different times. At this stage, patient data were mainly 
collected based on independent risk factors confirmed 
during model construction.

Statistical analysis
All variables in this study had less than 5% missing values, 
and mean interpolation was accomplished. Outliers were 
values that were less than the difference between the first 
quartile and 1.5 quartile spacing or more than the sum of 
the third quartile and 1.5 quartile spacing. Outliers in the 
data were replaced using mean values [22].

Continuous data were described as means ± standard 
deviation or median and interquartile range (IQR), and 
group comparisons were performed using the Students’ 
t test or Mann–Whitney U test. Categorical data were 
expressed as frequency and percentage, and comparisons 
were made using the Chi-square or Fisher’s exact test 
between groups.

In this study, Lasso and stepwise regression were per-
formed using "glmnet" and "MASS" packages of R 4.2.3. 
The BPNN model was constructed with the "nnet" pack-
age of R 4.2.3. The model’s predictive performance was 
evaluated in terms of calibration and discrimination. 
The discrimination was assessed by accuracy, sensitivity, 
specificity, and area under the curve (AUC). Calibration 
curves investigated the calibration of the model.

Results
Baseline characteristics
Figure 1 shows the flow chart of patient screening. There 
were 3673 patients enrolled, including 2764 and 909 
patients in the primary cohort and validation set. In 
the primary cohort, 2031 patients were eliminated due 
to not meeting inclusion and exclusion criteria. Rul-
ing out 46 patients with community-acquired MDRO 
infection, a total of 688 patients were identified, includ-
ing 550 patients in the training set and 138 in the test 
set. The incidence of MDRO infection in the ICU was 
15.84% (109/688), with the highest detection rate of Car-
bapenem-resistant Acinetobacter baumannii (CR-AB). 
The detection rate of other types of drug-resistant bac-
teria was depicted in Additional file  1: Table  S1. There 
were 259 (37.65%) females and 429 (62.35%) males. The 
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median age was 65.50 (IQR, 53.00–74.00) years. The 
body mass index was 23.88 (IQR, 21.48–26.44) kg/m2. 
The length of hospitalization and ICU stay were 19.00 
(IQR, 11.00–29.00) days and 9.00 (IQR, 5.00–16.00) days, 
respectively (Table 1).

Excluding 658 patients without meeting inclusion and 
exclusion criteria and 13 patients with non-first ICU 
admission, 238 patients were enrolled to validate exter-
nally. The prevalence of nosocomial infection of MDRO 
was 13.00% (31/288). The specific characteristics of the 
patients are summarized in Table 2. The comparisons of 
parameters between the primary cohort and validation 
set were presented in Additional file 1: Table S2.

Independent risk factors for MDRO infection
In our study, lasso adopted nested tenfold cross verifica-
tion to select the largest lambda with mean error within 
one standard deviation (lambda.1se) as the optima 
lambda. As shown in Fig.  2, the optimal lambda was 
0.033, corresponding to 11 variables with non-zero coef-
ficients: NRS-2002 score, APACHE II, number of antibi-
otics and duration of combination, chronic lung disease, 
hypoproteinemia, invasive operation before ICU, antibi-
otic use before ICU, length of ICU stay, long-term bed 
rest.

On this basis, variables were further analyzed using 
backward stepwise regression. APACHE II (OR 1.06, CI 
1.02–1.10; P = 0.002), quantity of antibiotics (O R 1.81, CI 
1.18–2.78; P = 0.002), chronic lung disease (OR 2.02, CI 
1.02–3.97; P = 0.04), hypoproteinemia (OR 3.59, CI 1.21–
10.35; P = 0.01), invasive operation before ICU (OR 2.20, 
CI 1.17–4.11; P = 0.01), antibiotics use before ICU (OR 
2.95, CI 1.58–5.53; P < 0.001), length of hospitalization 
(OR 1.04, CI 1.02–1.10; P < 0.001), length of ICU stay (OR 
1.02, CI 1.00–1.05; P = 0.04), and long-term bed rest (OR 
3.69, CI 1.80–8.12; P < 0.001) were risk factors for MDRO 
infections (Table 3).

Construction and evaluation of the BPNN model
Nine independent risk factors screened above were 
employed as input variables to develop the BPNN model 
(Fig.  3). The parameters of the model were Activation 
(nonlinear function): logistic, hidden_layer (number of 
hidden layers): 1, sizes (Number of hidden layer nodes): 
3, max_iter (number of iterations): 10, and linout (output 
function): logistic.

The model’s prediction performance was assessed by 
AUC, accuracy, sensitivity, and specificity, as shown 
in Table  4. The AUC of the training set and test set 
were 0.889 and 0.919, respectively. The validation set 

Fig. 1 Flowchart for patients selection
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Table 1 Demographic and clinical characteristics at baseline in the primary cohort

Variables Total (n = 688) Non-MDRO (n = 579) MDRO (n = 109) P value

Age (years) 65.50 (53.00–74.00) 66.00 (52.00–74.00) 65.00 (55.00–74.50) 0.837

Sex, male, n (%) 429 (62.35) 360 (62.2) 69 (63.3) 0.824

Length of hospitalization (days) 19.00 (11.00–29.00) 16.00 (10.00–26.00) 32.00 (24.00–52.00) < 0.001

Length of ICU stay (days) 9.00 (5.00–16.00) 8.00 (5.00–13.00) 19.00 (11.00–30.00) < 0.001

Long-term bed rest, n (%) 361 (52.5) 263 (45.40) 98 (89.90) < 0.001

Chemoradiotherapy, n (%) 36 (5.2) 26 (4.50) 10 (9.20) 0.044

ICU hospitalization history, n (%) 139 (20.2) 96 (16.6) 43 (39.4) < 0.001

Antibiotics use before ICU, n (%) 212 (30.8) 141 (24.4) 71 (65.1) < 0.001

Invasive operation before ICU, n (%) 141 (20.5) 87 (15.0) 54 (49.5) < 0.001

APACHE II score 17.00 (12.00–21.00) 16.00 (12.00–21.00) 21.00 (16.00–26.00) < 0.001

GCS score 14.00 (10.00–15.00) 15.00 (10.50–15.00) 12.00 (6.00–15.00) < 0.001

NRS-2002 score 3.00 (3.00–4.00) 3.00 (3.00–4.00) 4.00 (3.00–5.00) < 0.001

Body Mass Index 23.88 (21.48–26.44) 23.88 (21.30–26.42) 24.22 (21.97–26.66) 0.505

Diabetes, n (%) 186 (27.0) 157 (27.1) 29 (26.6) 0.912

Hypertension, n (%) 299 (43.5) 242 (41.8) 57 (52.3) 0.043

Hypoproteinemia, n (%) 26 (3.8) 13 (2.2) 13 (11.9) < 0.001

Tumor, n (%) 146 (21.2) 124 (21.4) 22 (20.2) 0.773

Cerebrovascular disease, n (%) 125 (18.2) 98 (16.9) 27 (24.8) 0.051

Cardiovascular disease, n (%) 158 (23.0) 127 (21.9) 31 (28.4) 0.138

Chronic lung disease 85 (12.4) 52 (9.0) 33 (30.3) < 0.001

Liver disease, n (%) 35 (5.1) 28 (4.8) 7 (6.4) 0.489

Renal disease, n (%) 53 (7.7) 41 (7.1) 12 (11.0) 0.158

Hematological disease, n (%) 14 (2.0) 12 (2.1) 2 (1.8) 1.000

Lymphoma, n (%) 2 (0.3) 2 (0.3) 0 (0.0) 1.00

Rheumatic disease, n (%) 10 (1.5) 9 (1.6) 1 (0.9) 0.941

Other diseases, n (%) 22 (3.2) 19 (3.3) 3 (2.8) 1.000

Albumin (g/L) 31.00(27.78–34.40) 31.10(27.80–34.55) 30.30(27.70–33.85) 0.306

Prealbumin (mg/L) 137.50(89.00–189.23) 136.00 (88.00–188.70) 141.40 (100.95–195.75) 0.295

C-reactive protein (mg/L) 39.11 (9.13–122.64) 39.11 (8.70–125.28) 42.71 (14.43–117.63) 0.503

Procalcitonin (ng/ml) 0.40 (0.11–2.84) 0.41 (0.10–2.83) 0.40 (0.12–2.83) 0.823

White blood cell  (109/L) 11.21 (8.00–14.79) 11.33 (7.89–14.80) 10.72 (8.30–14.62) 0.695

Creatinine (μmol/L) 84.05 (63.00–123.10) 83.90 (63.12–122.70) 87.80 (63.00–125.00) 0.67

BUN (mmol/L) 7.60 (5.02–12.16) 7.32 (4.90–11.71) 8.50 (6.28–12.74) 0.045

Number of previous operations 1.00 (0.00–2.00) 1.00 (0.00–1.50) 1.00 (0.00–2.00) 0.385

Mechanical ventilation, n (%) 456 (66.3) 367 (63.4) 89 (81.7) < 0.001

Time for mechanical ventilation (days) 3.00 (0.00–10.00) 3.00 (0.00–8.00) 10.00 (2.00–18.00) < 0.001

Central venous catheter, n (%) 370 (53.8) 305 (52.7) 65 (59.6) 0.181

Time for central venous catheter (days) 2.50 (0.00–7.00) 2.00 (0.00–6.00) 4.00 (0.00–11.00) 0.007

PICC, n (%) 72 (10.5) 51 (8.8) 21 (19.3) 0.001

Time for PICC (days) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.001

ECMO, n (%) 13 (1.9) 10 (1.7) 3 (2.8) 0.736

Time for ECMO (days) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.461

Gastrointestinal decompression, n (%) 171 (24.9) 138 (23.8) 33 (30.3) 0.153

Time for gastrointestinal decompression (days) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–3.00) 0.045

Dialysis, n (%) 48 (7.0) 35 (6.0) 13 (11.9) 0.027

Time for Dialysis (days) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–3.00) 0.021

Catheter, n (%) 631 (91.7) 530 (91.5) 101 (92.7) 0.696

Time for catheter (days) 7.00 (4.00–13.00) 6.00 (3.00–11.00) 12.00 (7.00–18.00) < 0.001

Number of other tubes 0.00 (0.00–1.00) 0.00 (0.00–1.00) 0.00 (0.00–1.00) 0.013
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revealed the same result (AUC = 0.811). Comparisons 
of the AUC for the model training set, test set, and vali-
dation set are depicted in Fig. 4. Calibration curves of 
the test and validation set showed that the model had 
good calibration ability (Fig. 5).

Features importance ranking in the BPNN model
In the BPNN model, the top 5 risk factors affecting 
MDRO infection were the length of hospitalization, the 
length of ICU stay, long-term bed rest, antibiotics use 
before ICU, and APACHE II (Fig. 6).

Level of operation: Level 1, minimal risk to the patient independent of anesthesia. Level 2, minimal to moderately invasive procedure. Level 3, moderate to 
significantly invasive procedure. Level 4, highly invasive procedure. Classification of incision: I, an uninfected operative wound. II, clean-contaminated. III, open, fresh, 
accidental wounds. Healing of the incision: A, inflammatory phase. B, proliferative phase. C, remodeling phase. MDRO: multidrug-resistant organism; ICU: intensive 
care unit; APACHE II: acute physiology and chronic health evaluation II; GCS: Glasgow coma scale; NRS: nutrition risk screening; BUN: blood–urea–nitrogen; PICC: 
peripherally inserted central venous catheters; ECMO: extracorporeal membrane oxygenation

Table 1 (continued)

Variables Total (n = 688) Non-MDRO (n = 579) MDRO (n = 109) P value

Time for other tubes (days) 0.00 (0.00–4.25) 0.00 (0.00–4.00) 0.00 (0.00–9.00) 0.001

Hormone, n (%) 199 (28.9) 146 (25.2) 53 (48.6) < 0.001

Enteral nutrition, n (%) 402 (58.4) 315 (54.4) 87 (79.8) < 0.001

Time for enteral nutrition (days) 3.00 (0.00–10.00) 2.00 (0.00–8.00) 10.00 (2.00–17.00) < 0.001

Parenteral nutrition, n (%) 390 (56.7) 328 (56.6) 62 (56.9) 0.964

Time for parenteral nutrition (days) 2.00 (0.00–5.00) 2.00 (0.00–5.00) 3.00 (0.00–8.00) 0.217

Carbapenem antibiotics use, n (%) 217 (31.5) 165 (28.5) 52 (47.7) < 0.001

Third-generation cephalosporin antibiotics use, n (%) 131 (19.0) 113 (19.5) 18 (16.5) 0.464

Quantity of antibiotics (categories) 1.00(1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–2.00) < 0.001

Time for using antibiotics (days) 8.00 (4.00–13.00) 7.00 (4.00–12.00) 12.00 (8.00–18.00) < 0.001

Time for antibiotics combination (days) 0.00 (0.00–3.00) 0.00 (0.00–2.00) 2.00 (0.00–10.00) < 0.001

Level of operation, n (%) 0.418

 Level 1 7 (1.0) 6 (1.0) 1 (0.9)

 Level 2 23 (3.3) 20 (3.5) 3 (2.8)

 Level 3 112 (16.3) 94 (16.2) 18 (16.5)

 Level 4 194 (28.2) 171 (29.5) 23 (21.1)

Classification of incision, n (%) 0.103

 I 173 (25.1) 150 (25.9) 23 (21.1)

 II 103 (15.0) 93 (16.1) 10 (9.2)

 III 17 (2.5) 13 (2.2) 4 (3.7)

Healing of the incision, n (%) 0.006

 A 287 (41.7) 253 (43.70) 34 (31.20)

 B 5 (0.7) 2 (0.30) 3 (2.80)

 C 1 (0.1) 1 (0.20) 0 (0.00)

Table 2 Demographic and clinical characteristics of patients in the validation set

MDRO: multidrug-resistant organism; ICU: intensive care unit; APACHE II: acute physiology and chronic health evaluation II

Variables Total (n = 238) Non-MDRO (n = 207) MDRO (n = 31) P value

Length of hospitalization (days) 18.00 (10.00–29.00) 17.00 (9.00–28.00) 26.00 (15.00–45.00) 0.004

Length of ICU stay (days) 8.00 (5.00–14.00) 8.00 (5.00–13.00) 19.00 (11.00–30.00) 0.013

APACHE II score 15.00 (11.00–21.00) 8.00 (5.00–13.00) 11.00 (7.00–17.00) < 0.001

Quantity of antibiotics (categories) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–2.00) < 0.001

Long-term bed rest, n (%) 62 (26.10) 40 (19.30) 22 (71.00) < 0.001

Antibiotics use before ICU, n (%) 65 (27.30) 46 (22.20) 19 (61.30) < 0.001

Invasive operation before ICU, n (%) 36 (15.10) 19 (9.20) 17 (54.80) < 0.001

Chronic lung disease 27 (11.30) 20 (9.70) 29 (22.60) 0.070

Hypoproteinemia, n (%) 10 (4.20) 7 (3.40) 3 (9.70) 0.250
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Discussion
In this study, we developed and validated an MDRO 
infection prediction model for ICU patients based on 
the BPNN algorithm. The model included nine scientif-
ically and clinically accessible independent risk factors: 
length of hospitalization, length of ICU stay, long-
term bed rest, antibiotics use before ICU, APACHE II, 
invasive operation before ICU, quantity of antibiotics, 
chronic lung disease, and hypoproteinemia. Utiliz-
ing a handful of variables, the BPNN model achieved 
good performance with high accuracy and sensitivity 
for predicting the incidence of MDRO infection in ICU 
patients. Furthermore, we found that the drug-resistant 
bacteria causing infection in ICU patients were mainly 
Gram-negative bacteria, especially CR-AB. CR-AB can 

survive for several days on dry surfaces, and can also 
be asymptomatic to colonize the skin, respiratory tract, 
and intestines. Therefore, active monitoring of CR-AB 
should be strengthened for the high-risk population of 
MDRO infection.

The prediction model can forecast the risk of indi-
vidual MDRO infection based on predictors, provid-
ing theoretical support for the early identification of 
high-risk groups and better guidance for formulating 
MDRO infection management strategies [23, 24]. More 
and more scholars have begun to explore the construc-
tion of the MDRO infection prediction model. Wang 
et al. collected the data from 331 patients, adopting the 
method of univariate analysis followed by multivari-
ate analysis. Finally, three risk factors were integrated 

Fig. 2 Features selection by Lasso. A Tenfold cross validation for the optimal lambda (λ) parameter selection in the LASSO model. There are two 
dashed lines in the cross-validation diagram, one is the input value with the minimum Mean Square deviation and the other is the input value 
of the minimum Mean Squared Error(MSE). We take the value of λ with the minimum MSE as the optimal λ. B Binomial deviance curve was plotted 
versus log (λ), where λ is the tuning parameter Lasso regression cross-validation results. LASSO: least absolute shrinkage and selection operator

Table 3 Multivariable logistic analysis for MDRO infection

MDRO: multidrug-resistant organism; ICU: intensive care unit; APACHE II: acute physiology and chronic health evaluation II

Predictors β SE Wald χ2 OR 95% CI P value

(Intercept) − 6.81 0.62 − 10.91 0.001 0.000–0.003 < 0.001

APACHE II 0.06 0.02 3.05 1.06 1.02–1.110 0.002

Quantity of antibiotics (categories) 0.59 0.22 2.72 1.81 1.18–2.78 0.002

Chronic lung disease 0.70 0.35 2.03 2.02 1.02–3.97 0.040

Hypoproteinemia, n (%) 1.28 0.54 2.37 3.59 1.24–10.35 0.010

Invasive operation before ICU, n (%) 0.79 0.32 2.46 2.20 1.17–4.11 0.010

Antibiotics use before ICU, n (%) 1.08 0.32 3.40 2.95 1.58–5.53 < 0.001

Length of hospitalization (days) 0.03 0.01 4.23 1.04 1.02–1.05 < 0.001

Length of ICU stay (days) 0.02 0.01 1.98 1.02 1.00–1.05 0.040

Long-term bed rest, n (%) 1.30 0.38 3.42 3.69 1.80–8.12 < 0.001
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to build an MDRO infection prediction model with 
an AUC of 0.77 (95% CI 0.70–0.84) [11]. However, 
the model’s poor performance in predicting MDRO 

infection risk may be due to other valuable independ-
ent variables ignored during the data analysis. The rela-
tionships between variables in the ICU are complex, 
including linear or nonlinear relationships. Neverthe-
less, LR was used by default to deal with linear relation-
ships between independent and dependent variables 
and may oversimplify complex nonlinear relationships. 
BPNN was widely applied in the medical field with its 
unique advantages, including disease diagnosis, disease 
classification, prognosis prediction, etc. In this study, 
the MDRO infection prediction model was constructed 
using BPNN. The AUC of the training and test sets 
were 0.889 and 0.918, respectively. Compared with the 
previous MDRO infection models [25–27], the predic-
tion performance of our BPNN model constructed was 
improved. In addition, we collected 238 ICU patients’ 
data for external verification. The AUC, accuracy, sen-
sitivity, and specificity were 0.811, 0.852, 0.806, and 
0.715, respectively. These results demonstrated that the 
BPNN model had good discrimination. That suggested 
that our model had good external applicability and 
could be used  clinically  for early prediction of MDRO 
infection in ICU patients.

In the BPNN model, length of hospitalization, length 
of ICU stay, long-term bed rest, antibiotics use before 
ICU, and APACHE II score were the top 5 predictors of 
MDRO infection. Length of hospitalization and ICU stay 
were correlated with MDRO infection in ICU patients, 
which agreed with the conclusions of previous studies 
[28]. Compared with the non-ICU environment, there 
are more bacterial isolates in the ICU environment, 
and the susceptibility is generally lower. ICU patients 
are more likely to be directly or indirectly exposed to 

Fig. 3 BPNN model for predicting MDRO infection. BPNN: backpropagation neural network; MDRO: multidrug-resistant organism

Table 4 Performance of the BPNN model in the training, test 
and validation set

BPNN: backpropagation neural network; AUC: area under the curve

Model AUC (95% CI) Accuracy Sensitivity Specificity

Training set 0.889 (0.852–0.925) 0.895 0.818 0.811

Test set 0.919 (0.856–0.983) 0.918 0.857 0.864

Validation set 0.811 (0.731–0.891) 0.852 0.806 0.715

Fig. 4 AUCs of the BPNN model of MDRO infection. The x-axis 
represents 1-specifcity, and the y-axis represents sensitivity. The 
part below the red, green and blue lines are the AUCs of the train, 
testing and validation set. AUC: area under the curve; BPNN: 
backpropagation neural network; MDRO: multidrug-resistant 
organism
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Fig. 5 Calibration curves of the BPNN model. The x-axis represents the predicted probability of MDRO infection. The y-axis represents the actual 
diagnosed of MDRO infection. The blue solid line represents the perfect prediction with the same predicted probability as the actual probability. 
The black line represents the performance of the nomogram. The closer the calibration curve of the model is to the black line, the better the model 
prediction is represented. A Calibration curve of the test set. B Calibration curve of the validation set. BPNN: backpropagation neural network; 
MDRO: multidrug-resistant organism

Fig. 6 Ranking of features importance in the BPNN model. BPNN: backpropagation neural network



Page 10 of 11Wang et al. Journal of Intensive Care           (2023) 11:49 

MDRO [29]. As previous evidence indicated, this study 
also found that long-term bed rest was an independent 
risk factor for MDRO infection [30]. A meta-analysis 
showed that prior use of antibiotics, especially third-
generation cephalosporin antibiotics, was higher in the 
multidrug-resistant Gram-negative infection group 
than in the non-infected group, significantly increas-
ing Gram-negative resistance [31]. This study showed 
the same results: antibiotics use before ICU was an 
independent risk factor for MDRO infection. APACHE 
II score is a tool for evaluating the severity of patients’ 
disease and predicting prognosis. The previous study 
found that the higher the APACHE II score, the greater 
the likelihood of MDRO infection and mortality [32]. 
This study similarly found that the APACHE II score was 
positively associated with MDRO infection. The previ-
ous study showed the association between MDRO and 
major surgery operation before admission to ICU [33], 
quantity of antibiotics [34], chronic lung disease [35] and 
hypoproteinemia [36].

This study has the following advantages. We combined 
Lasso and stepwise regression to screen for risk factors 
to avoid multiple collinearity and overfitting of variables. 
In addition, compared with LR, the BPNN algorithm had 
strong fault tolerance, nonlinear mapping ability, self-
learning and adaptive ability, and generalization ability. 
Thus, BPNN was employed to mine data characteristics 
and develop our study’s MDRO infection model for ICU 
patients.

However, it was undeniable that our study had some 
drawbacks. First, the current study was a single-center 
retrospective modeling study, which restricted us from 
determining causal relationships between predictors 
and outcomes. Therefore, further prospective clinical 
trials are needed to verify the validity of our model. 
Second, the retrospective and observational data may 
result in selection bias. Finally, although external vali-
dation was performed in this study, it was limited to 
data from the same center. In subsequent studies, the 
sample size can be further expanded, and multicenter 
studies can be added to optimize the structure of the 
BPNN model.

Conclusion
We combined Lasso and backward stepwise regres-
sion to screen out nine predictors and built the BPNN 
model for MDRO infection in ICU patients based on 
them. The model  has proven  good prediction perfor-
mance, which may be an effective instrument for iden-
tifying high-risk groups of MDRO infection in the early 
stage and helping medical personnel intervene early 
to reduce the rate of MDRO infection in critically ill 
patients.
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