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Abstract

Sepsis is frequently complicated by coagulopathy and, in about 35 % of severe cases, by disseminated intravascular
coagulation (DIC). In Japan, aggressive treatment of septic DIC is encouraged using antithrombin and recombinant
thrombomodulin. The macrophages, monocytes, and neutrophils are a source of TF and participate in the direct
activation of the coagulation cascade in the early phases of sepsis. And activated factor X (FXa), which is involved in
hemostasis, thrombogenesis, inflammation, and cellular immune responses, induces TF expression in human peripheral
monocytes and, conversely, that inhibition of FXa activity reduces TF expression. Both inflammation and coagulation
play an important role in DIC due to sepsis. In addition to inflammatory cytokines (TNF-α, IL-1 and so on), HMGB1 has
recently been shown to mediate the lethal late phase of sepsis and caused coagulopathy. TM not only binds HMGB1
but also aids the proteolytic cleavage of HMGB1 by thrombin. There have been many reports of the efficacy of
recombinant TM and antithrombin for treatment of septic DIC from Japan. Further investigation of the efficacy
of recombinant TM and AT in countries other than Japan, as well as the monitoring of medical costs incurred during
hospitalization, will help validate the use of TM and AT for treatment of septic DIC.
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Introduction
Sepsis is a clinical syndrome defined as a systemic re-
sponse to infection. It is frequently complicated by coag-
ulopathy [1] and, in about 35 % of severe cases, by
disseminated intravascular coagulation (DIC) [2–4]. In
the European Union and the USA, the 2012 guidelines
of the Surviving Sepsis Campaign do not recommend
treatment for septic DIC [5, 6]. In contrast, in Japan, ag-
gressive treatment of septic DIC is encouraged [7–9]. It
is not an exaggeration to state that Japan is one of the
countries that most effectively treats patients with septic
DIC. In this article, we review the mechanisms that
underlie the interaction between sepsis and DIC and, by
highlighting our findings, the effects of sepsis on the co-
agulation system.

Review
Sepsis-induced DIC
During sepsis, inflammation diffusely activates the co-
agulation system, consuming multiple clotting factors
and resulting in DIC [10, 11]. In systemic inflammatory
response syndromes caused by infection, both perturbed
endothelial cells and activated mononuclear cells pro-
duce proinflammatory cytokines that promote coagula-
tion [12, 13]. Proteins expressed on these cells initiate
coagulation. Thrombin elicits the production of mono-
cyte chemoattractant protein 1 and interleukin (IL)-6
in monocytes, fibroblasts, and mesothelial cells, and
the production of IL-6 and IL-8 in vascular endothelial
cells by interacting with protease-activated receptors
(PARs) 1, 3, and 4. Via PAR 2, factor Xa, and the tissue
factor-VIIa complex also upregulate IL-6 and IL-8 in
vascular endothelial cells [14–16]. In addition, the inhib-
ition of physiologic anticoagulant mechanisms and
fibrinolysis by endothelial cells causes intravascular fi-
brin deposition.
Initiation of the extrinsic coagulation protease cascade

requires tissue factor (TF), a 47-KDa transmembrane
glycoprotein [17]. We reported that macrophages,
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monocytes, and neutrophils are a source of TF in sepsis
animal models and participate in the direct activation of
the coagulation cascade in the early phases of sepsis
[18–20]. We also showed that activated factor X (FXa),
which is involved in hemostasis, thrombogenesis, inflam-
mation, and cellular immune responses, induces TF
expression in human peripheral monocytes and, con-
versely, that inhibition of FXa activity reduces TF ex-
pression in an experimental model of rat endotoxemia
[21]. Our results indicate that FXa directly modulates TF
expression and that both inflammation and coagulation
play an important role in DIC due to sepsis. Develop-
ment of a procoagulant state in sepsis, due to aberrant
expression of tissue factor (TF) and sharp decrease of its
major inhibitor tissue factor pathway inhibitor (TFPI),
could lead to microthrombotic organ failure [22]. TFPI
is a major inhibitor of the TF-FVIIa-initiated coagulation
in vivo. Tang et al. [22] and Gando S et al. [23] suggested
that during early sepsis, the available TFPI might not ad-
equately balance the increased TF-dependent coagula-
tion activation. Moreover Tang et al. suggested that
plasmin might be partly responsible for proteolytic deg-
radation of TFPI in the early stages of sepsis.
In addition to inflammatory cytokines, other factors

have recently been shown to mediate the lethal late
phase of sepsis; these factors include tumor necrosis fac-
tor (TNF)-α, IL-1, high-mobility group box-1 (HMGB1)
protein, and nuclear architectural chromatin-binding
protein [24]. HMGB1 is secreted by activated monocytes
and macrophages [25] and released from necrotic or
damaged cells [26]. Extracellular HMGB1 mediates cell-

to-cell signaling and activates proinflammatory pathways
[27]. When released into the extracellular space, it elicits
the production of inflammatory cytokines [25], which
further augment the release of HMGB1 into the extra-
cellular space [28]. The recent published findings by Lu
et al. [29] demonstrate that hyperacetylated HMGB1 is a
novel biomarker for pyroptosis, though necrosis-induced
HMGB1 release is not acetylated. Moreover, tissue dam-
age induces the release of HMGB1 with all-cysteines re-
duced, whereas this form of HMGB1 does not stimulate
cytokine release; it recruits leukocytes to the site of in-
jury. And during infection or later stage of injury,
HMGB1 released is acetylated or disulfide-bonded, and
it stimulates cytokine release [30]. The various functions
of HMGB1 are shown in Fig. 1.
Recently, PAMPs and DAMPs in early phase of sepsis

trigger tissue factor expression on monocytes and neu-
trophil extracellular trap (NET) release by neutrophils,
promoting immunothrombosis. Although immuno-
thrombosis plays a role in early host defense against bac-
terial dissemination, uncontrolled immunothrombosis
may also lead to DIC [31]. Besides, recent studies have
identified histones, the most abundant proteins in the
nucleus, as a new class of DAMPs [32–35]. Extracellular
histones promote neutrophil migration, platelet aggrega-
tion, and endothelial cell death [32, 36, 37]. Histones
have been detected in the plasma of mice, baboons, and
human patients with sepsis and trauma, and the total
concentration of histones can reach 70, with that of
histone H3 reaching 15 μg/ml [32, 38]. Nakahara et al.
suggested that extracellular histones cause massive

Fig. 1 The various functions of HMGB1 in sepsis. HMGB1 is actively secreted from macrophages and monocytes, which are activated by inflammatory
cytokines, and it is also passively released from necrotic cells. HMGB1 may then cause activation of phagocytic cells, resulting in production of
pro-inflammatory mediators and chemokines. HMGB1 binds to RAGE on endothelial cells. And endothelial cells express RAGE, adhesion molecules, TNF-α,
chemokines, PAI-1, and promote down regulation of TM. RAGE receptor for advanced glycation end-products, IL interleukin, TNF tumor necrosis
factor, PAI-1 plasminogen activator inhibitor-1, DIC disseminated intravascular. Coagulation, SIRS systemic inflammatory response syndrome, MAP
mitogen-activated protein
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thromboembolism associated with consumptive coagu-
lopathy, which is diagnostically indistinguishable from
DIC and that rTM binds to histones and neutralizes the
prothrombotic action of histones [39]. A mechanism of
DIC and MOF due to sepsis are shown in Fig. 2.
Moreover, if the severity of the infectious disease is the

same, coagulopathy of infectious disease in surgically pa-
tients is increased by addition of the coagulation dis-
order due to surgical stress (Fig.3). In treatment of basic
disease, the surgeons and intensivists must take that co-
agulopathy of the surgical stress deteriorates DIC tem-
porarily into consideration.

Diagnostic criteria of septic DIC
Different diagnostic criteria of septic DIC have been
established by the International Society on Thrombosis
and Haemostasis [40], the Japanese Ministry of Health,
Labor and Welfare (JMHLW) [41], and the Japanese
Association of Acute Medicine (JAAM) [42].
Although the criteria of the JAAM are the most spe-

cific for septic DIC [42, 43], a prospective study in Japan
found no significant differences in the odds ratios for
prediction of DIC outcomes calculated on the basis of
these three diagnostic criteria [44]. As the mortality rate
of DIC is still high, early diagnosis and treatment are
required.

Laboratory tests
Screening assays (global coagulation tests) using scoring
parameters, such as prothrombin time, fibrinogen level,

platelet count, and levels of fibrin-related markers, pro-
vide important information about the degree of coagula-
tion factor activation and consumption.
Examination of DIC scores (based on the JMHLW cri-

teria) at the beginning of DIC treatment showed that
greater treatment efficacy was achieved in pre-DIC than
in DIC patients [45]. Outcome worsened as the DIC
score increased, thus suggesting that both early diagnosis
and early treatment of DIC are important. To define the
pre-DIC state, we prospectively evaluated global coagu-
lation tests, hemostatic molecular markers, and the on-
set of DIC within a week after registration [46]. The
levels of D-dimer and FMC were significantly lower in
patients with pre-DIC than in those without DIC,
whereas there were no significant differences in the
levels of thrombin-antithrombin complex (TAT),
plasmin-α2plasmin inhibitor complex (PIC), antithrom-
bin (AT), and thrombomodulin (TM). However, no
markers that provided an appropriate cutoff value for
differentiating between “pre-DIC” and “without DIC” (as
do DIC scores) were identified.

Treatment of septic DIC
Common sense dictates that administration of an anti-
biotic that specifically targets the infection is the most
important therapy in septic DIC. After administering an-
tibiotics, surgical drainage at the infection site should be
performed as soon as possible. Physicians should first
administer treatment for the underlying disease when
sepsis is diagnosed [4, 8].

Fig. 2 A mechanism of DIC and MOF due to sepsis. When the pathogen-associated molecular patterns (PAMPs) (for example, endotoxin) and
damage-associated molecular patterns (DAMPs) act on monocytes via TLR and on neutrophils, a reactivated monocyte produce TF, various inflammatory
cytokines, and HMGB1, and moreover, detection of PAMPs and DAMPs trigger neutrophil extracellular traps (NETs) release by neutrophils, promoting
immunothrombosis. The uncontrolled immunothrombosis may lead to disseminated intravascular coagulation. And HMGB1 acts on EC and promotes
upregulation of TF and downregulation of TM from EC, resulting endothelial cell injury, and microcirculation disorder develops DIC and MOF. TF tissue
factor, TM thrombomodulin, TLR Toll-like receptor, IL-1β interleukin-1β, TNF-α tumor necrosis factor-α, EC endothelial cell, HMGB1 high-mobility group
box protein 1, PAI plasminogen activator inhibitor, MOF multiple organ failure, NETs neutrophil extracellular traps
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Antithrombin
AT is a single-stranded glycoprotein with a molecular
weight of ca. 59,000. It is synthesized in the liver and in-
hibits the activity of thrombin and activated factors X,
IX, VII, XI, and XII [47]. Extensive clinical studies have
been performed in patients with severe sepsis [48–53] to
determine the appropriate dose of AT. Twenty-eight
days of AT treatment did not improve the survival rate
in the KyberSept trial [48], which was a multicenter,
double-blind phase III study that included 2314 patients
with severe sepsis (a total of 30,000 IU of AT was ad-
ministered over 4 days). However, in a subgroup ana-
lysis, an improvement in the survival rate on day 90 was
observed in patients not receiving concomitant heparin
treatment; this finding agrees with the results of previous
phase II studies supporting the efficacy of AT [54–58]. A
recent Japanese study by Iba et al. [59] used a nonrando-
mized, multi-institutional, post-marketing survey to deter-
mine the optimal AT dose for treating septic DIC. They
reported survival rates of 65.2 % in patients receiving
1500 IU/day and 74.7 % in patients receiving 3000 IU/day.
A logistic regression analysis showed that the higher dose
(3000 IU/day) was associated with a better survival out-
come [59]. A second survey, in which the baseline AT
levels in patients with septic DIC were less than 40 %,
showed a significantly higher rate of DIC resolution and a
better survival outcome in patients receiving 3000 IU/day
compared with those receiving 1500 IU/day [60]. The ratio
of bleeding events in the two groups was not significantly
different.
We conducted a prospective, randomized, controlled

multicenter trial for DIC patients with sepsis and AT
levels of 50 to 80 % to test the hypothesis that concen-
trated administration of AT improves DIC, resulting in
faster recoveries and better outcomes [61]. Patients re-
ceiving AT for 3 days had significantly lower DIC scores
and higher recovery rates than did those who did not

receive AT. This finding suggests that moderate doses of
AT (30 IU/kg per day) improve DIC scores, thereby in-
creasing the recovery rate without any risk of bleeding
in patients with septic DIC.
Tagami et al. [62] performed an analysis using infor-

mation collected from a nationwide administrative data-
base in Japan. Patients with severe pneumonia and DIC
(n=9075) were divided into an AT group (n=2663) and a
control (no AT) group (n=6412). Propensity score
matching created a matched cohort of 2194 paired pa-
tients who did or not receive AT treatment. The 28-day
mortality rate was 9.9 % lower in the AT group than in
the control group. Multiple logistic regression analyses
showed an association between AT use and the 28-day
mortality rate (adjusted odds ratio, 0.85).

Heparin
The British guidelines recommend the use of unfractio-
nated heparin (UFH) because of its short half-life and
availability of antagonists, especially in patients at a high
risk of bleeding. Japanese guidelines indicate a prefer-
ence for low molecular weight heparin because it proved
superior in improving coagulation abnormalities and
caused fewer hemorrhagic adverse events in a random-
ized controlled trial (RCT) conducted in DIC [63]. In
the HETRASE (A Randomized Clinical Trial of Unfrac-
tioned Heparin for Treatment of Sepsis) study [64], the
results of which were reported after publication of the
guidelines, and the efficacy of UFH for sepsis was de-
nied. Zarychanski R et al. [65] reported that the risk haz-
ard ratio for death associated with the use of heparin in
septic patients was 0.88 (95 % confidence interval (CI),
0.77–1.00; I2 = 0 %). In addition, Wang et al. [66] also re-
ported a decreased mortality associated with heparin use
(odds ratio = 0.656, 95 % CI = 0.562–0.765, P < 0.0001).
Moreover, Iba et al. [67] reported that both UFH and
LMWH attenuated the toxicity of histone H3, in vivo as

Fig. 3 Effect of surgical stress for coagulopathy (DIC) due to infection. If the severity of the infectious disease is the same, coagulopathy of
infectious disease in surgically patients is increased by addition of the coagulation disorder due to surgical stress. In the treatment of infection
control, the surgeons and intensivists must take that coagulopathy of the surgical stress deteriorates DIC temporarily into consideration
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well as in vitro, and that the effects of heparins shown in
ex vivo study were independent of their anticoagulant ef-
fect. They suggested that the administration of heparin
could become a treatment of choice for patients suffer-
ing from severe sepsis.

Thrombomodulin
TM is an endothelial anticoagulant cofactor that plays
an important role in the regulation of intravascular co-
agulation [68]. It accelerates the thrombin-catalyzed
conversion of protein C to activated protein C, which in-
hibits monocyte and macrophage activation [69, 70] and
consequently suppresses the production of inflammatory
cytokines such as TNF-α and IL-1β [70]. In addition, re-
cent studies have shown that TM binds to HMGB1 to
prevent its interaction with the receptors for advanced
glycation end-products [71]. We reported that TM not
only binds HMGB1 but also aids the proteolytic cleavage
of HMGB1 by thrombin [72]. These findings highlight
the novel anti-inflammatory actions of TM.
We investigated the effects of soluble recombinant hu-

man TM on the production of inflammatory cytokines
and the plasma level of HMGB1 in an experimental
endotoxemia model [73]. Endotoxemia was induced in
rats via a bolus intravenous injection of 4 mg/kg lipo-
polysaccharide (LPS). Recombinant TM (1 mg/kg) was
administered as a bolus injection 30 min before or 4 h
after LPS. LPS increased the plasma levels of TNF-α and
IL-1β, which peaked at 1 and 3 h, respectively, and over
time, the plasma levels of HMGB1. Even when its ad-
ministration was delayed, recombinant TM markedly
inhibited the LPS-induced increase in plasma levels of
HMGB1 (Fig. 4) and the thrombin-AT complex, as well
as the increase in liver dysfunction and mortality. The

use of recombinant TM may therefore be beneficial for
treatment of septic patients.
In a Japanese phase III randomized control trial (RCT)

in which 227 DIC patients with 125 hematological ma-
lignancies and 102 infections (sepsis) received recombin-
ant TM or unfractionated heparin (UFH), the rate of
resolution of DIC was 66.1 and 49.9 %, respectively [74].
The rate of disappearance of bleeding was 35.2 % in the
recombinant TM group and 20.9 % in the UFH group,
and the 28-day mortality rate was 28.0 and 34.6 %, re-
spectively. In an analysis of 80 patients with infectious
DIC, the rate of resolution of DIC was 63.2 % in the
UFH group and 73.2 % in the recombinant TM group
[75]. In an international phase II RCT of 750 septic pa-
tients with suspected DIC, the 28-day mortality rate
was 17.8 % in the recombinant TM group and 21.6 %
in the placebo group [76]; there was a tendency toward
a low rate in the TM group, although the difference
was not significant (P = 0.273). An international phase
III clinical trial evaluating the efficacy of TM in pa-
tients with severe sepsis and coagulopathy is ongoing in
the USA, South America, Asia, Australia, the European
Union, and other countries (https://clinicaltrials.gov/ct2/
show/NCT01598831?term=ART-123&rank=2).
On the other hand, Tagami et al. [77] found that re-

combinant TM was not an effective treatment for
sepsis-associated DIC following severe pneumonia. This
conclusion was based on propensity scores and an in-
strumental variable analysis of information obtained
from the Japanese Diagnosis Procedure Combination
(JDPC) inpatient database, a nationwide administrative
database. No significant difference in the 28-day mortal-
ity rate was documented between the two groups in a
propensity-matched analysis.

Fig. 4 Effect of rTM on the plasma levels of HMGB1. Temporal changes in plasma HMGB1 concentrations after injection of lipopolysaccharide
(LPS). Rats were given saline plus LPS (closed squares); pretreatment of recombinant human soluble thrombomodulin (rTM), LPS plus saline (closed
circles); or saline, LPS plus delayed treatment of rTM (closed triangles). All data represent the mean and SEM (n = 6 per group). [73] *P < 0.05 (vs.
the LPS group). #P < 0.01 (vs. the LPS group). rTM recombinant thrombomodulin
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We also evaluated the efficacy of recombinant TM for
DIC using the JDPC database [78–80]. We found that
the frequency of use of AT, heparin, and protease inhibi-
tors decreased from 2010 to 2012 in Japan, while that of
recombinant TM significantly increased (25.1, 43.1, and
56.8 % in 2010, 2011, and 2012, respectively; P < 0.001).
Logistic regression analysis showed that the study period
was associated with the use of recombinant TM in pa-
tients with DIC. The odds ratio (OR) was 2.34 (95 %
confidence interval [CI], 2.12–2 to 58; P < 0.001) in 2011
compared with 4.34 (95 % CI, 3.94–4.79; P < 0.001) in
2012. Large hospital size was the most significant factor
associated with the use of recombinant TM in patients
with DIC (OR, 3.14; 95 % CI, 2.68–3.66; P < 0.001). The
use of recombinant TM has dramatically increased, and
a large hospital size was significantly associated with in-
creased use from 2010 to 2012 in Japan. We found no
significant difference in the in-hospital mortality rate be-
tween patients receiving AT and recombinant TM. How-
ever, the administration of recombinant TM was
significantly associated with lower hospitalization times
and medical costs during hospitalization.

Conclusions
This review discussed the mechanisms that underlie the
interaction between sepsis and DIC and the effects of sep-
sis on the coagulation system, as highlighted by our data.
Further investigation of the efficacy of recombinant TM
and AT in countries other than Japan, as well as the moni-
toring of medical costs incurred during hospitalization,
will help validate the use of TM and AT for treatment of
septic DIC.
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