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Abstract 

Background Recent advances on cardiorespiratory monitoring applied in ARDS patients undergoing invasive 
mechanical ventilation and noninvasive ventilatory support are available in the literature and may have potential 
prognostic implication in ARDS treatment.

Main body The measurement of oxygen saturation by pulse oximetry is a valid, low-cost, noninvasive alternative 
for assessing arterial oxygenation. Caution must be taken in patients with darker skin pigmentation, who may experi-
ence a greater incidence of occult hypoxemia. Dead space surrogates, which are easy to calculate, have important 
prognostic implications. The mechanical power, which can be automatically computed by intensive care ventilators, 
is an important parameter correlated with ventilator-induced lung injury and outcome. In patients undergoing non-
invasive ventilatory support, the use of esophageal pressure can measure inspiratory effort, avoiding possible delays 
in endotracheal intubation. Fluid responsiveness can also be evaluated using dynamic indices in patients ventilated 
at low tidal volumes (< 8 mL/kg). In patients ventilated at high levels of positive end expiratory pressure (PEEP), 
the PEEP test represents a valid alternative to passive leg raising. There is growing evidence on alternative parameters 
for evaluating fluid responsiveness, such as central venous oxygen saturation variations, inferior vena cava diameter 
variations and capillary refill time.

Conclusion Careful cardiorespiratory monitoring in patients affected by ARDS is crucial to improve prognosis 
and to tailor treatment via mechanical ventilatory support.

Keypoints 

1. The  SpO2/FiO2 ratio, corrected minute ventilation and ventilatory ratio are valid surrogates for estimating gas 
exchange in ARDS patients, and caution should be taken in patients with darker skin pigmentation and moder-
ate–severe ARDS.

2. Changes in esophageal pressure during noninvasive respiratory support and mechanical power must be carefully 
monitored to estimate PSILI and VILI in ARDS patients undergoing mechanical ventilation.

3. The use of dynamic indexes of fluid responsiveness should be encouraged in ARDS patients. Pulse pressure vari-
ation and stroke volume variation have also been validated in mechanically ventilated patients with low tidal 
volume.
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Introduction
Patients with acute respiratory distress syndrome 
(ARDS) exhibit inflammatory pulmonary edema result-
ing from changes in endothelial and epithelial perme-
ability, leading to organ damage. The severity of ARDS 
determines the application of different types of mechani-
cal support. Superimposed hemodynamic impairment 
may complicate patient management, worsening out-
comes. Therefore, a comprehensive evaluation of ARDS 
patients involves careful respiratory and hemodynamic 
monitoring, encompassing both invasive and noninva-
sive technologies, along with clinical and laboratory data. 
This approach is crucial for tailoring therapeutic strate-
gies to individual patients and minimizing lung injury.

This manuscript reviews strategies for respiratory and 
hemodynamic monitoring in ARDS patients, highlighting 
the most recent data and clinical utility in daily manage-
ment, as synthesized in Fig. 1.

Respiratory monitoring
Careful respiratory monitoring is essential in patients 
affected by ARDS. This approach allows the application 
of an adequate intensity of treatment and reduces injuries 
caused by mechanical ventilation (MV).

Gas exchange efficiency
Gas exchange is directly affected by pulmonary altera-
tions induced by ARDS. In this section, we review the 
renewed role of pulse oximetry and useful surrogate indi-
ces of dead space.

Pulse oximetry
Pulse-oximetry exploits the principle of spectrophotom-
etry to quantify the amount of oxygenated hemoglobin 
in blood, allowing continuous noninvasive monitoring 
of arterial saturation [1]. The difference between arterial 
oxygen saturation  (SaO2) measured via blood gas analysis 

4. A possible alternative to passive leg raising in a mechanically ventilated patient is the PEEP test. Two minimally 
invasive alternatives to predict fluid responsiveness are changes in central venous oxygen saturation and capil-
lary refill time after a passive leg raising or a fluid challenge.

Keywords Acute respiratory distress syndrome, Ventilator-induced lung injury, Oxygen delivery, Fluid therapy

Fig. 1 Respiratory and hemodynamic monitoring in patients affected by ARDS. Recent evidence about respiratory and hemodynamic monitoring 
in mechanically ventilated patients is available. VeCORR corrected minute ventilation, EtCO2 end-tidal  CO2, SpO2 peripheral oxygen saturation, FiO2 
fraction of inspired oxygen, PaO2 arterial oxygen partial pressure, mL milliliters, kg kilograms, IBW ideal body weight, TVc tidal volume challenge, 
PEEP positive end expiratory pressure, ΔScvO2 central venous oxygen saturation increase
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and oxygen saturation measured via pulse-oximetry 
 (SpO2) is normally less than 3% [2]. However, the accu-
racy of  SpO2 may be lower among patients with darker 
skin pigmentation, thus overestimating arterial oxygen 
saturation. This phenomenon, as recently demonstrated 
by Henry et al., possibly increases the incidence of occult 
hypoxemia, i.e., patients in which  SaO2 is lower than 88% 
with an  SpO2 higher than 92% [3]. The clinical conse-
quences of occult hypoxemia have also been investigated 
during the recent pandemic. In COVID-19 patients, 
occult hypoxemia is more frequent in Asian, Black and 
non-Black Hispanic patients than in White patients, with 
lower treatment eligibility for these three ethnicities [4].

The ratio of pulse-oximetric oxygen saturation to the 
fraction of inspired oxygen  (SpO2/FiO2) is an acceptable 
surrogate of the ratio of the partial pressure of arterial 
oxygen to  FiO2  (PaO2/FiO2). Its use has been described 
both in invasively and noninvasively ventilated patients 
[5–9]. The  SpO2/FiO2 ratio is a good outcome predictor 
both in patients with coronavirus disease (COVID-19) 
and non-COVID-19 ARDS patients [10, 11]. In patients 
with COVID-19-associated pneumonia requiring oxy-
gen therapy, the  SpO2/FiO2 ratio at admission showed an 
area under the curve (AUC) of 85% for the prediction of 
ARDS occurrence [12]. Kim et al. showed that the  SpO2/
FiO2 ratio can predict high-flow nasal cannula (HFNC) 
failure [13]. Moreover,  SpO2/FiO2 shows a good correla-
tion with  PaO2/FiO2 in invasively ventilated COVID-19 
ARDS patients, and when computed on day 2 and day 3, 
it is associated with outcome [11]. These data confirm the 
reliability of pulse oximetry for evaluating gas exchange 
in ARDS patients and for following this trend, as pulse 
oximetry is continuously measurable. It is easy to meas-
ure and is thus especially valid in contexts in which a 
blood gas analyzer is not promptly available.

The optimal  SpO2 concentration for ARDS treatment 
is still a matter of debate, ranging from 88% to 96–100% 
to balance the risk of hyperoxia and hypoxia. In a recent 
large randomized controlled trial (RCT), Semler et  al. 
showed that, in mechanically ventilated patients, the 
use of a lower (90%, range from 88 to 92%), intermedi-
ate (94%, 92–96%) or higher (98%, 96–100%)  SpO2 target 
does not affect either ventilator-free days or hospital out-
comes [14].

Dead space
Physiological dead space is the inspired volume of air that 
does not participate in gas exchange. It includes anatomic 
and alveolar dead space [15]. In mechanically ventilated 
patients, the anatomic dead space remains relatively 
constant, while the alveolar dead space can significantly 
increase according to alterations in the ventilation/perfu-
sion (V/Q) ratio [16, 17].

In a seminal study, Nuckton et  al. demonstrated that 
physiological dead space is significantly higher in non-
ARDS survivors than in survivors [18]. Like in ARDS 
patients, COVID-19 pneumonia is characterized by an 
increase in minute ventilation and an increase in the 
dead space fraction [19, 20]. Additionally, in COVID-19 
ARDS patients, there is a significant association between 
the amount of dead space computed in the first 7  days 
and mortality [21]. According to a secondary analysis 
of the PRoVENT COVID-19 study, the dead space frac-
tion is significantly greater in nonsurvivors and increases 
more during the first four days than in survivors, suggest-
ing that dynamic changes during the initial week in the 
intensive care unit (ICU) are crucial for evaluating out-
comes [22]. These recent data underline the strong prog-
nostic role of dead space and strengthen the rationale for 
its use in ARDS patients.

Corrected minute ventilation
The corrected minute ventilation (VEcorr) is a simple and 
easy-to-calculate surrogate of the dead space fraction that 
does not require the expired carbon dioxide  (CO2) meas-
urement.  VEcorr is calculated as the ventilation required 
to achieve a  PaCO2 value of 40 mmHg. In mechanically 
ventilated COVID-19 ARDS patients, Fusina et al. found 
a strong correlation between  VEcorr and the dead space 
fraction, with a higher VEcorr in nonsurvivors, which was 
independently associated with mortality [23].

Ventilatory ratio
In recent years, in addition to dead space fraction com-
putation, the ventilatory ratio (VR) has been proposed 
as an additional, easy-to-calculate estimation of venti-
lation efficiency [24]. VR is computed as the product of 
minute ventilation and arterial carbon dioxide weighed 
on the patient’s predicted body weight [24]. It is a unit-
less ratio, being approximately one in healthy subjects. In 
ARDS patients, Sinha et al. reported a positive relation-
ship between VR and alveolar dead space. Furthermore, 
VR is more common in nonsurvivors than in survivors 
[24] and is associated with increased odds of hospital 
mortality (OR 2.07, confidence interval [CI] 1.53–2.83). 
As recently shown by Siegel et  al., the ventilatory ratio, 
in association with the APACHE III score at admission, 
has an area under the curve (AUC) of 0.81 (95% CI 0.68–
0.92) in predicting hospital mortality and is significantly 
better than the APACHE III score alone [25]. Changes in 
VR within the first 4 h after prone positioning in ARDS 
patients predict weaning from mechanical ventilation, 
with an AUC of 0.64 (95% CI 0.53–0.75) [26].

VR reliability can be affected by venous admix-
ture (Qva/Q) and the amount of patient  CO2 produced 
 (VCO2). Indeed, these two factors may increase the 
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difference between alveolar and arterial  PCO2, with the 
latter being used for VR calculations. Maj et  al. showed 
that the predictive value of the VR decreases in most 
severe patients, who are affected by greater Qva/Q impair-
ment [27]. To investigate the effect of  VCO2, Monteiro 
et al. performed a post hoc analysis of the PETAL-ROSE 
trial [28]. The authors showed that the presence of neu-
romuscular blockade, a factor influencing skeletal muscle 
 CO2 production, did not significantly affect the relation-
ship between VR and mortality [29].

In mechanically ventilated patients, dead space should 
be continuously assessed as an additional measurement 
of gas exchange impairment, together with the  PaO2/
FiO2 or  SpO2/FiO2 ratio. The use of surrogates, which 
are easier to calculate, seems to be reliable and should 
encourage the use of such measures to predict patient 
outcomes. Caution must be used in moderate and severe 
ARDS patients with major  Qva/Q impairment when 
assessing VR. In these situations, dead space might be 
overestimated.

ETCO2 to arterial  PCO2
A further parameter to estimate gas exchange efficiency 
is the computation of the end-tidal-to-arterial  PCO2 
ratio  (PETCO2/PaCO2), which measures the influence 
of venous admixture and alveolar dead space on lung 
performance. Ideally, this ratio should be equal to one. 
Bonifazi et al. showed that the  PETCO2/PaCO2 ratio sig-
nificantly decreases from mild to severe ARDS [30]. 
Additionally,  PETCO2/PaCO2 is strongly correlated with 
the amount of nonaerated tissue measured via computed 
tomography (CT) and respiratory compliance [30]. A 
subsequent study revealed a relationship between the 
 PETCO2/PaCO2 ratio, alveolar ventilation and hospital 
mortality [31]. For every 0.01 increase in the  PETCO2/
PaCO2 ratio, the risk for mortality decreases by 1%.

Currently, weaning from venous extracorporeal mem-
brane oxygenation (VV-ECMO) lacks well-defined cri-
teria and is often based on acceptable blood gas analysis 
and the absence of excessive inspiratory effort. In a recent 
multicenter study, Lazzari et al. showed that the  PETCO2/
PaCO2 ratio, with a cutoff of 0.83, is able to predict wean-
ing [32].

Ventilation and patient self‑induced lung injury
Mechanical ventilation and spontaneous inspiratory 
effort may be harmful. The mechanical power, its nor-
malization (i.e., the mechanical power ratio) and the 
measurement of the esophageal pressure are crucial to 
minimize these sources of lung injury in patients affected 
by ARDS. Indices of recruitment are helpful for ade-
quately establishing mechanical ventilation.

The mechanical power
Mechanical power refers to the energy dissipated in the 
respiratory system while moving a specific volume at a 
given PEEP. It is typically expressed in Joules per minute 
(J/min) [33]. This energy dissipation within the respira-
tory system plays a crucial role in modulating and poten-
tially promoting ventilator-induced lung injury (VILI). 
The mechanical power is a unifying indicator computed 
considering the major ventilatory variables generated 
from the interaction between the patient and ventila-
tor. It can be assessed under passive conditions and cat-
egorized based on ventilation modality (pressure or 
volume-controlled ventilation) using algebraic equations 
[34]. The newest intensive care mechanical ventilators 
now offer the possibility to directly measure mechanical 
power, with acceptable accuracy compared to traditional 
algebraic methods [35].

Recent studies have demonstrated that mechanical 
power at admission is associated with hospital mortal-
ity across a heterogeneous range of patients [36–38]. 
Urner et  al. further explored the relationship between 
the intensity of mechanical power throughout the inten-
sive care stay and mortality, revealing an increased risk of 
death with each additional day of exposure to mechani-
cal power equal to or greater than 17  J/min [39]. Pozzi 
et al. analyzed the clinical course of ventilatory variables 
in ARDS patients during the initial three days of MV and 
identified the mechanical power ratio at admission as 
the only variable associated with intensive care mortal-
ity [40]. By day 3, the mechanical power ratio, alveolar 
dead space, and  PaO2/FiO2 were associated with the out-
come. Therefore, in ARDS patients, assessing ventilatory 
variables during the initial days of mechanical ventilation 
seems to be crucial for predicting outcomes.

Concerning the different components of mechani-
cal power, Costa et  al. showed a stronger association 
with mortality for the dynamic component (i.e., the res-
piratory rate and the driving pressure) than for the total 
mechanical power [41]. However, the impact of similar 
values of mechanical power on lung injury can vary sig-
nificantly based on factors such as ventilated lung size, 
respiratory system compliance, or the amount of aerated 
tissue at a given PEEP. Coppola et al. demonstrated that 
normalizing the mechanical power at admission to the 
compliance of the respiratory system and the amount of 
ventilated tissue, as computed by lung CT, provides a bet-
ter predictive measure for outcomes in ARDS patients 
[36].

Esophageal pressure and diaphragmatic ultrasound
Preserving spontaneous breathing over invasive ven-
tilation offers advantages [42, 43]. However, elevated 
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inspiratory efforts are associated with high negative 
esophageal pressure (Pes) swing and positive transpul-
monary pressure, which may lead to patient self-inflicted 
lung injury (PSILI). PSILI is associated with organ dys-
function and increased mortality [44–46]. Additionally, 
excessive inspiratory effort cannot be detected simply by 
monitoring airway pressure [47].

Computing the changes in esophageal pressure dur-
ing inspiration (ΔPes) as the difference between the 
esophageal pressure at the beginning of inspiration and 
its lowest value is the easiest way to measure inspira-
tory effort. In the presence of acute respiratory failure, 
several noninvasive respiratory support methods, such 
as HFNC therapy, continuous positive airway pres-
sure (CPAP), and noninvasive ventilation (NIV), should 
improve gas exchange and decrease inspiratory effort. 
Menga et  al., in a crossover study comparing noninva-
sive support, showed that only NIV delivered by a hel-
met is able to reduce delta pes [48]. In a large group of 
COVID-19 ARDS patients receiving helmet CPAP, total 
stress, defined as the sum of the transpulmonary pressure 
generated by the patient and the end expiratory airway 
pressure, is independently associated with a negative out-
come [49].

Transpulmonary pressure measurements allow clini-
cians to evaluate lung recruitment efficacy. With this aim, 
it can be useful to evaluate the effects of awake prone 
positioning, as performed in COVID-19 ARDS patients. 
Prone positioning leads to a reduction in ventral alveo-
lar hyperinflation and dorsal atelectasis, thus promot-
ing homogenization of transpulmonary pressure and 
improvement in oxygenation. Additionally, as demon-
strated in a cohort of COVID-19 ARDS patients assisted 
with helmet CPAP, prone positioning significantly 
reduces the amount of work involved in breathing [50]. 
The role of esophageal pressure manometry in evaluat-
ing inspiratory effort and preventing PSILI is increasingly 
recognized, and this technique is always recommended 
for ARDS patients.

Another possible way to evaluate inspiratory effort 
is the use of ultrasound. However, Steinberg et al. show 
poor correlation between diaphragmatic thickening frac-
tion (DTI), diaphragmatic excursions and esophageal 
swing in a cohort of 46 mechanically ventilated patients 
affected by Covid-19 ARDS [51]. Similarly findings are 
available from Poulard et  al. [52]. Delta Pes monitoring 
remains therefore essential to evaluate PSILI in patients 
undergoing assisted mechanical ventilation.

Nevertheless, diaphragmatic ultrasound remains 
a valid tool to predict weaning from MV, and recent 
studies strengthen this evidence. Mawla et  al. find a 
possible cutoff of 13.5% for DTI as accurate to predict 
weaning from MV [53]. Another original investigation 

shows how the association of different diaphragmatic 
ultrasound indexes has an area under the curve of 0.77 
in predicting extubation success [54].

Recruitment: the recruitment/inflation ratio 
and the EIT‑based PEEP titration
Chen et al. proposed the recruitment-to-inflation ratio 
(R/I ratio) as a noninvasive method to compute the 
potential for lung recruitment at different PEEP levels 
[55]. Subsequently, the R/I ratio has been clinically vali-
dated to be accurate in detecting lung recruitment in 
ARDS patients in the supine position [56, 57]. In a sec-
ondary analysis of a previous study [58], the R/I ratio 
at two levels of PEEP, both in the supine and prone 
positions, correlated with lung recruitment computed 
by CT scan [59]. In addition, the overall data confirm 
high variability in lung recruitability among ARDS 
patients, with different effects on gas exchange, res-
piratory mechanics and hemodynamics. Zerbib et  al. 
reported that an R/I ratio > 0.62 predicts lung recruita-
bility with an AUC of 0.80 in COVID-19 ARDS patients 
[60]. Patients with high recruitability show an improve-
ment in both oxygenation and respiratory system com-
pliance, while in patients with low recruitability, an 
increase in oxygenation is associated with a decrease in 
cardiac output. These data confirm that the R/I ratio is 
a valuable aid for physicians to select an adequate level 
of PEEP, to improve respiratory mechanics and oxy-
genation, and to monitor hemodynamics and cardiac 
output.

New interesting evidences are available about electri-
cal impedance tomography (EIT) as an effective tool to 
titrate PEEP in patients affected by ARDS. In an original 
article on 108 Covid-19 ARDS patients, PEEP titration 
was performed during EIT monitoring, via decrement-
ing PEEP trials [61]. The authors identify the best PEEP 
as the one corresponding to the crossing point of the col-
lapse–overdistension curves. They also determine the 
PEEP with the best regional distribution of ventilation. 
Interestingly, EIT-based PEEP found at the collapse-over-
distension crossing point well correlates to the PEEP with 
the highest compliance, while PEEP with the best EIT 
ventilation distribution is higher than the previous ones 
[61]. Jimenez et  al. show that EIT-based PEEP setting 
allows to decrease mechanical power in ARDS patients, 
thus being potentially able to reduce VILI in this popu-
lation [62]. Robust data on clinical outcomes of PEEP 
titration techniques are still lacking in the literature. A 
multicenter randomized controlled trial is actually going 
on to find out differences on clinical outcomes in ARDS 
patients whose PEEP is titrated using either EIT-based 
techniques or PEEP/FiO2 tables [63].
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Cardiac monitoring
In ARDS patients, hemodynamic instability and low car-
diac output may further decrease oxygen delivery and 
promote tissue hypoxia [64]. Strategies aimed at increas-
ing cardiac output often involve fluid administration 
and vasoactive agents [65]. Therefore, hemodynamic 
monitoring is crucial in ARDS patients to optimize fluid 
administration and cardiac output [66].

Dynamic indexes of fluid responsiveness
As also recently highlighted by the Surviving Sepsis 
Campaign, the intravenous fluids of choice for critically 
ill patients are balanced crystalloids [67]. The risks of 
net fluid accumulation in critically ill patients have also 
recently been advocated [68]. The deliberate choice of 
a liberal versus a restrictive fluid strategy fails to show 
benefits in terms of reducing mortality [69]. A possible 
decrease in terms of length of ICU stay and mechanical 
ventilation is demonstrated in patients receiving lower 
amounts of intravenous fluids [70]. These considerations 
underline the importance of fluid administration optimi-
zation in mechanically ventilated patients.

Pulse pressure variation and stroke volume variation 
(PPV, SVV) are established predictors of fluid respon-
siveness and are typically validated in patients venti-
lated with a tidal volume greater than 8 mL/kg. Indeed, 
as also recognized by the acronym LIMITS (low heart/

respiratory rate ratio, irregular beats, mechanical 
ventilation at low tidal volume, increased abdomi-
nal pressure, thorax opening, spontaneous breathing), 
mechanical ventilation at low tidal volume may reduce 
the sensitivity of these tests [71]. This is a possible limi-
tation for their application in patients ventilated with 
protective strategies (i.e., ARDS) [72]. However, Wang 
et  al. recently demonstrated good PPV performance 
in patients ventilated with less than 8 mL/kg TVc [73]. 
Similarly, as highlighted in Table 1, Taccheri et al. [74] 
showed that, in patients ventilated with low tidal vol-
ume (6  mL/kg), a PPV or SVV increase of 20% or 1 
point after the application of a TVc compared to the 
baseline is a good predictor of fluid responsiveness in 
patients ventilated with a low tidal volume.

As recently reported by Lai et al., in patients mechan-
ically ventilated with high positive end expiratory pres-
sure (> 10  cmH2O), a decrease in PEEP (the so-called 
PEEP test) is a possible alternative to passive leg raising 
(PLR) to demonstrate fluid responsiveness. The authors 
have shown that an increase in the cardiac index is evi-
dent after both a PLR or with a decrease in PEEP from 
10 to 5  cmH2O, with high sensitivity and specificity [75] 
(Table 1). According to Perez et al., the validity of these 
results has to be further proven, as indicated by the low 
respiratory compliance of the study population in the 
original paper [76].

Table 1 Recent evidences on predictors of fluid responsiveness suitable for mechanically ventilated patients

Recent evidences about predictors of fluid responsiveness in mechanically ventilated patients

PPV pulse pressure variation, IBW ideal body weight, TVc tidal volume challenge, mL milliliters, kg kilograms, ΔSVV relative changes of stroke volume variation, ΔPPV 
relative changes of pulse pressure variation, AUC  area under the receiver operating characteristic curve, PLR passive leg raising, MV mechanical ventilation, CO cardiac 
output, EtCO2 end-tidal carbon dioxide, PPI plethysmographic peripheral perfusion index, ΔScvO2 changes in central venous oxygen saturation, ΔIVC changes in 
inferior vena cava diameter, PEEP positive end expiratory pressure

Predictor Mechanical ventilation settings Diagnostic cutoff Recent evidences

PPV Tidal volume > 8 mL/kg of IBW 13% (gray zone between 9 and 13%) In patients ventilated at low tidal volume 
(< 8 mL/kg), a TVc increases PPV performance 
[73]

ΔSVV Patients ventilated with low tidal volume 
and application of a TVc (from 6 to 8 mL/
kg of IBW)

Increase of 20%a or + 1  pointb compared 
to the values before TVc

AUC of respectively 0.94 and 0.98 in predict-
ing fluid responsivity from Taccheri et al. [74]

ΔPPV Patients ventilated with low tidal volume 
and application of a TVc (from 6 to 8 mL/
kg of IBW)

Increase of 20%c or + 1  pointd compared 
to the values before TVc

AUC of respectively 0.82 and 0.94 in predict-
ing fluid responsivity from Taccheri et al. [74]

PLR Independently from MV parameters CO increase of 5%
or
EtCO2 increase of 5%/2 mmHg
or
PPI increase of 9%

 + 4% of ΔScvO2 after a PLR validated 
by Giraud et al. with an AUC of 0.92 [78]

ΔIVC Patients ventilated with low tidal volume 
(6 mL/kg)

 + 4% of ΔIVC after a  TVce or − 24% 
after a  PLRf

AUC of respectively 0.76 and 0.88 in predict-
ing fluid responsiveness from Taccheri et al. 
[74]

PEEP test PEEP decrease from 10 to 5  cmH2O Increase of CI > 8.6% when compared 
to the baseline

AUC of 0.94 in predicting fluid responsiveness 
[75]
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Central venous oxygen saturation
Central venous oxygen saturation  (ScvO2) is a valuable 
indicator of oxygen delivery adequacy for patients who 
are not equipped with a pulmonary artery catheter and 
for whom mixed venous oxygen saturation  (SvO2) is 
not available. Concerns have been recently raised about 
its reliability during mechanical ventilation: it has been 
shown that the difference between  ScvO2 and  SvO2 
may increase when intrathoracic pressures grow, espe-
cially when high PEEPs are employed [77]. Nevertheless, 
beyond the  ScvO2 absolute values, its variation respond-
ing to diagnostic maneuvers may provide useful hemo-
dynamic insights. A recent prospective study showed 
that the increase in  ScvO2 (ΔScvO2) after PLR is a good 
predictor of fluid responsiveness and is associated with 
an increase in cardiac index [78]. These findings and the 
cutoff found by the authors (+ 4%) are comparable to 
the results of a meta-analysis from Pan et  al., in which 
the authors showed that ΔScvO2 after a fluid challenge 
(500  mL) may adequately predict fluid responsiveness 
[79]. Another possible indicator of fluid responsiveness 
and cardiac output adequacy is the veno-arterial carbon 
dioxide difference (Pv-aCO2), together with the arterial 
to venous oxygen content difference (Ca-vO2) [80]. In 
COVID-19 patients with ARDS, the ratio of Pv-aCO2 to 
Ca-vO2 was significantly associated with mortality, with 
an AUC of 0.89 (95% CI 0.598–0.774, P = 0.001). The best 
cutoff found by the authors was 2.1 mmHg/mL [81].

Ultrasound and fluid responsiveness
The use of the Velocity Time Integral (VTI) of the Left 
Ventricular Outflow Tract (LVOT) allows a semi-con-
tinuous measure of the stroke volume (SV) and its varia-
tion (ΔSV) after a fluid challenge or a passive leg raising. 
It is therefore a valuable and well-validated measure for 
evaluation of fluid responsiveness [82]. Recently, it has 
been demonstrated how LVOT-VTI time variation well 
correlates with other parameters of fluid responsiveness, 
such as PPV, in a cohort of surgical patients [83]. How-
ever, LVOT-VTI measure is not always easy to assess and 
might be influenced by inter-operator variability [84]. 
The measure of the carotid systodiastolic (CSD) flow has 
been recently proved to be a valid surrogate of the LVOT-
VTI, easier to measure [85]. Further researches may be 
useful to validate this parameter and allow its use to eval-
uate fluid responsiveness.

Respiratory change in inferior vena cava diameter 
(ΔIVC) is easy to measure with little expertise on tho-
racic ultrasound. It may provide important information 
on cardiac preload [66]. However, its sensibility is lower 
in patients ventilated at low tidal volume and in sponta-
neously breathing patients [74]. In their report, Taccheri 

et al. show that, similarly to PPV and SVV, ΔIVC is poten-
tially applicable to patients ventilated at low tidal volume, 
thus enhancing their applicability on ARDS patients. The 
authors find an AUC of 0.76 and 0.86 of ΔIVC in predict-
ing fluid responsiveness, respectively, after a TVc or a 
PLR when the applied tidal volume is less than 6 mL/kg 
(Table 1) [74].

Capillary refill time
The capillary refill time (CRT) is a simple-to-evaluate 
index of peripheral tissue perfusion and microcircula-
tion. Monitoring CRT in critically ill patients reduces 
organ dysfunction and mortality compared to monitoring 
lactate levels alone [86]. In a prospective observational 
study, Raia et  al. showed a direct correlation between a 
decrease in CRT after a 500-mL fluid challenge and fluid 
responsiveness. A low percentage (0.5%) of the total vari-
ance of the measurements is due to operator dependence 
(intrareader variability), thus stressing the reliability of 
this noninvasive parameter for assessing fluid respon-
siveness [87]. Caution must be taken in the use of CRT 
in patients with vasodilatory shock. Fage et  al. showed 
that in septic patients, the correlation between a decrease 
in CRT and fluid or vasoactive administration is consist-
ent only when substantial increases in the mean arterial 
pressure (MAP) or cardiac index (CI) are recorded. In 
contrast, in patients with an increase in MAP and CI less 
than 15% compared to the baseline, CRT is poorly corre-
lated with fluid and vasoactive responsiveness [88]. CRT 
is an indirect index of microcirculatory dysfunction. In 
282 critically ill patients, a correlation between CRT and 
microcirculatory impairments has been highlighted using 
the sidestream dark field imaging technique. CRT is inde-
pendently correlated with the microvascular flow index 
(MFI). Patients admitted to the ICU with a higher CRT 
have a higher mortality [89]. Similar findings have been 
described in patients with COVID-19-related ARDS, in 
which, despite hemodynamic stability and normal lac-
tate levels, CRT and microcirculatory indices (such as the 
MFI) are impaired, resulting in altered tissue perfusion 
[90].

CRT ranks therefore among the useful and easily meas-
urable parameters to assess fluid responsiveness, and 
its use must be encouraged, with a word of caution in 
patients with vasodilatory shock. In the latter, monitor-
ing CRT to test fluid responsiveness may result in false 
negatives due to decreased test sensitivity.

Conclusions
In patients affected by ARDS, harmful mechanical venti-
lation associated with a positive fluid balance may worsen 
lung injury. Careful respiratory and hemodynamic moni-
toring is therefore crucial in these patients.
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The  SpO2/FiO2 ratio is a valid alternative to the  PaO2/
FiO2 ratio for evaluating gas exchange. Corrected minute 
ventilation and the ventilatory ratio are two valuable sur-
rogates for estimating the dead space fraction, and their 
prognostic value is well recognized in ARDS patients. 
Mechanical power directly measures the energy delivered 
to the lungs by mechanical ventilation and is thus able to 
predict VILI in invasively ventilated patients. It is easy 
to calculate because algorithms can be directly imple-
mented in mechanical ventilators. In patients undergoing 
noninvasive mechanical ventilation, the role of esopha-
geal pressure is crucial for estimating the P-SILI.

In addition to respiratory variable monitoring, fluid 
stewardship is also important for detecting VILI. 
Dynamic indices of fluid responsiveness are also suitable 
for patients undergoing protective mechanical ventilation 
at low tidal volumes. There is increasing evidence about 
the validity of the ΔscvO2 and CRT after a PLR or a fluid 
challenge. The role of these easy-to-evaluate parameters 
may be increasingly important in patients affected by res-
piratory failure, especially in disadvantaged contexts in 
which enhanced monitoring is not available.
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