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Recent advances in disseminated intravascular
coagulation: endothelial cells and fibrinolysis in
sepsis-induced DIC
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Abstract

Endothelial cells are highly active, sensing and responding to signals from extracellular environments. They act as
gatekeepers, mediating the recruitment and extravasation of proinflammatory leukocytes to the sites of tissue damage or
infection. Endothelial cells participate in fibrinolysis by secreting tissue-type plasminogen activator, which converts
plasminogen to active enzyme plasmin through constitutive and regulated pathways. Fibrinolysis systems and
inflammation are tightly linked, as both responses are major host defense systems against both healing processes
of tissue repair as well as pathogenic microorganisms. Endothelial cell dysfunction is one of the early signs of
systemic inflammation, and it is a trigger of multiple organ failure in sepsis. The marked increase in plasminogen
activator inhibitor-1 level causes fibrinolytic shutdown in endotoxemia or sepsis and is one of the most important
predictors of multiple organ dysfunction during sepsis-induced disseminated intravascular coagulation (DIC).
Leukocytes exhibit the first-line response to microorganisms. Leukocyte-derived elastase degrades cross-linked
fibrin to yield molecular species distinct from those generated by plasmin. The alternative systems for fibrinolysis
that interact with the plasminogen activator-plasmin systems may play crucial roles in the lysis of fibrin clots in
sepsis-induced DIC.
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Introduction
The vascular endothelium is highly dynamic and exhibits
functional complexity. It performs its essential function
of regulating systemic blood flow by finely tuning the
diameter of blood vessels and regulates vascular tone by
releasing vasodilators including nitric oxide and prosta-
glandin I2 as well as vasoconstrictors such as endothelin
and platelet-activating factor. Uncontrolled and spread-
ing systemic inflammatory responses to microbial infec-
tions play critical roles in the pathogenesis of sepsis.
Under these conditions, leukocyte accumulation dam-
ages the endothelial cells and heightens permeability,
leading to tissue edema.
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The systemic inflammatory response occasionally causes
abnormalities related to blood coagulation and fibrinolysis,
ranging from subtle activation of coagulation and fibrin-
olysis systems to disseminated intravascular coagulation
(DIC), which is characterized by simultaneous widespread
microvascular thrombosis and profuse hemorrhaging [1].
However, the pathophysiology of sepsis-induced DIC is
extremely complex and under extensive investigation [2].
The key event underlying life-threatening complications is
the overwhelming host inflammatory response to the in-
fectious microorganism, leading to the overexpression of
inflammatory mediators [3]. This article briefly summa-
rizes the current knowledge of the pathogenesis of DIC fo-
cusing on vascular endothelial cells and the plasminogen
activator-plasmin systems in sepsis.
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Endothelial cell functions in physiological states
Endothelial cells form the inner lining of the vascular
endothelium and act as a selective barrier, controlling
the trans-cellular exchange of fluids, ions, and bioactive
molecules between circulating blood and perivascular
tissues [4]. Under typical physiological conditions, endo-
thelial cells actively sense and respond to signals around
from their extracellular environments. Endothelial cells
regulate hemostatic balance by site-specific release of pro-
coagulants and anticoagulation factors. Endothelial cells
synthesize von Willebrand factor (VWF) and protease-
activated receptors (PARs) for hemostasis. They also ex-
press many molecules involved in the control of platelet
function, and blood coagulation systems, including prosta-
cyclin, nitric oxide, tissue factor pathway inhibitor, heparin
sulfate, thrombomodulin, and endothelial protein C recep-
tor (EPCR) (Figure 1) [5]. In particular, thrombomodulin-
mediated binding to thrombin efficiently converts protein
C to activated protein C, which results in limited inactiva-
tion of coagulation factors Va and VIIIa by proteolysis, in
the presence of cofactor protein S [6]. The generation of
activated protein C is accelerated by binding to EPCR and
by presentation to the thrombin-thrombomodulin com-
plex. The thrombin-thrombomodulin complex plays an
indirect role in the suppression of fibrinolysis through the
activation of an inhibitor, thrombin activatable fibrinolysis
inhibitor (TAFI) [7]. Endothelial cells participate in fibrin-
olysis by secreting tissue-type plasminogen activator (tPA),
which converts plasminogen to active enzyme plasmin
through constitutive and regulated pathways [8,9]. This re-
action is controlled by plasminogen receptors including α-
enolase, histone H2B, plasminogen receptor, and annexin
A2/S100A10 at the surface of endothelial cells [10,11].
The annexin A2 anchors S100A10 on the surface of
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Figure 1 Schematic representation of endothelial functions in physio
factor; AT-III, antithrombin-III; TFPI, tissue factor pathway inhibitor; PC, protein
endothelial protein C receptor; NO, nitrate oxide; PGI2, prostaglandin I2.
endothelial cells, which recruits tPA and plasminogen to the
carboxyl-terminal lysine residues of the receptor, resulting in
enhanced activation of plasminogen by tPA to generate fi-
brinolytic activity [12]. Ectopic expression and overexpres-
sion of annexin A2 lead to uncontrolled production of
plasmin, which causes fatal hemorrhagic diatheses due to
hyperfibrinogenolysis in patients with malignancy [13,14].
Endothelial cells act as gatekeepers to mediate the re-

cruitment and extravasation of proinflammatory leuko-
cytes to the sites of tissue damage or infection. There is
a multistep cascade in leukocyte trafficking, including
rolling, firm adhesion, and transmigration. Each step is
enhanced by the upregulation of adhesion molecules on
the surface of endothelial cells and the expression of che-
mokines. In brief, rolling of leukocytes on the endothelial
cells is promoted by binding between the endothelial
E-selectin and P-selectin with specific leukocyte ligands,
CD44, E-selectin ligand-1 (ESL-1), and β2 integrins. Firm
adhesion and resistance to dislodgement by fluid shear
stress is promoted by the bindings of the endothelial cell
protein vascular cell adhesion molecule (VCAM)-1 and
intercellular adhesion molecule (ICAM)-1 with leukocyte
integrins [15]. The leukocytes then transmigrate between
endothelial cells into extravascular tissues, which requires
the coordinated redistribution of lymphocyte function-
associated antigen-1 (LFA-1) and endothelial cell ICAM-1.

Fibrinolysis under normal physiological conditions
Following the activation of blood coagulation systems,
fibrin generation and tissue hypoxia stimulate an increase
in tPA secretion from endothelial cells, which initiates and
accelerates the conversion of plasminogen to active en-
zyme plasmin [16]. Plasmin is a serine protease that hydro-
lyzes cross-linked fibrin, resulting in the release of a variety
of complexes made up degradation products. The DD/E
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fragment is the smallest complex, consisting of two frag-
ment D moieties and a non-covalently bound fragment E.
DD/E is held together by uncleaved coiled coils, with lar-
ger forms representing longitudinally associated strings of
DD/E.
Several types of cells, including vascular endothelial

cells, produce plasminogen activator inhibitor-1 (PAI-1),
which specifically regulates the initial phase of fibrinolysis
by inhibiting plasminogen activators. PAI-1 efficiently in-
hibits tPA by rapid binding, forming a stable 1:1 complex.
PAI-1 acts as an acute phase reactant, as its levels drastic-
ally increase during various inflammatory responses [17].
α2-Plasmin inhibitor (α2-PI) is a physiological inhibitor of
plasmin that regulates the late phase of fibrinolysis. α2-PI
circulates in plasma at half the molar concentration of
plasminogen. Thus, the α2-PI concentration is sufficient to
neutralize plasmin under normal physiological conditions,
where only small amounts of plasminogen are activated. α2-
PI rapidly inhibits plasmin by irreversibly binding, forming
an inactive complex with plasmin (plasmin-inhibitor com-
plex; PIC). In addition, α2-PI inhibits the binding of plas-
minogen to fibrin molecules through competition for lysine
binding sites, which is a unique regulatory phenomenon of
fibrinolysis. During stable clot formation, α2-PI is cross-
linked to fibrin by factor XIIIa, and α2-PI-bound fibrin is
resistant to degradation by plasmin. TAFI is a carboxypepti-
dase B-like proenzyme that is converted to active enzyme
TAFIa by thrombin. The endothelial cell receptor thrombo-
modulin stimulates the thrombin-mediated TAFI activation
greater than 1,000-fold [7]. TAFIa slowly inhibits the fibrino-
lytic processes by removing carboxyl-terminal lysine resi-
dues from fibrin molecules. This action is inhibitory because
carboxyl-terminal lysine residues are important stimulators,
serving as binding sites for tPA and plasminogen, as well as
plasmin.

Inflammation and endothelial cells
Blood coagulation and inflammation are tightly linked, as
both responses are major host defense systems of the heal-
ing process of damaged tissue repair and against the pres-
ence of pathogenic microorganisms [18]. Tissue damage
and exposure to proinflammatory stimuli shift the balance
of the endothelial function toward a procoagulant pheno-
type [19]. Inflammation is characterized by increased per-
meability of the vascular endothelium, causing leakage of
blood components and extravasation of immune cells, in-
cluding macrophages and dendritic cells [20]. The vascular
endothelial cells contribute to innate immunity as nonpro-
fessional effectors. These cells recognize the presence of
microorganisms through their toll-like receptors (TLRs),
which are responsible for recognizing structures conserved
among microbial species, pathogen-associated molecular
patterns (PAMPs). Sepsis is associated with a dysfunction
of the host immune system response to invading pathogens
[21]. An excessive response to TLR ligands is known to in-
duce lethal septic shock. TLRs are also capable of detecting
endogenous molecules released from damaged cells, termed
as damage-associated molecular patterns (DAMPs). Thus,
stimulations of PAMPs or DAMPs through TLRs activate
signaling pathways that depend mainly on MyD88 and
TRIF, leading to the translocation of NF-κB and IRFs into
the nucleus [20]. The activation of these transcription fac-
tors induces the expression of type I interferons (IFNs) and
proinflammatory cytokine genes such as tumor necrosis
factor (TNF) and IL-6.
The coagulation serine proteases initiate proinflam-

matory or anti-inflammatory signaling through PARs,
which are widely expressed on platelets, endothelial cells,
and immune cells [22]. In endothelial cells, responses to
thrombin are mediated by PAR1, and responses to tissue
factor/factor VIIa and factor Xa are mainly facilitated by
PAR2 [23]. PAR1 activation by thrombin stimulates Rho-
dependent cytoskeletal responses involved in the perme-
ability and migration of endothelial cells [24]. Activation
of endothelial surfaces by PAR1 promotes adhesion and
rolling of leukocytes. The sphigosine 1-phosphate (S1P) is
a downstream component of PAR1 signaling that plays a
critical role in the amplification of the inflammation re-
sponse, through the regulation of motility of dendritic cells
onto lymph nodes during severe sepsis [25]. Interestingly,
activated protein C on EPCR elicits cytoprotective signals
through the activation of PAR1, which is fundamentally
different from activation by thrombin. The localized activa-
tion of PAR1 in caveolae by activated protein C on EPCR
and transactivation of the S1P receptor are thought to be
responsible for the anti-inflammatory and anti-apoptotic ef-
fects [26]. Moreover, TAFIa promotes anti-inflammatory ef-
fects by inactivating the complement factors C5a and C3a
on endothelial cells. In vivo studies demonstrated that TAFI
deficiency exacerbated allergic inflammation and acute lung
injury [27,28].

Dysfunction of endothelial cells in sepsis
Sepsis is a systemic inflammatory response syndrome
(SIRS), occurring in patients with infection or injury. The
dysfunction of vascular endothelial cells is one of the early
signs of a systemic inflammation and is a trigger for mul-
tiple organ failure in sepsis [29]. The clinical features of
sepsis-induced DIC include widespread thrombosis in the
microcirculation of different tissues, resulting in severe dis-
ruption of organ homeostasis. The development of DIC in
septic patients has been found to be an independent pre-
dictor of mortality [30].

Endothelial cell dysfunction and regulation of blood
coagulation
The vascular response against to inflammation is character-
ized by smooth muscle changes, inducing vascular dilation
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and endothelial cell contraction. These result in vascular
leakage of proteins into extravascular spaces and tissues.
The inflammatory provocations also promote the migra-
tion of leukocytes from the microvascular circulation into
inflammatory sites by stimulating increased expression of
adhesion molecules on the surface of endothelial cells,
including selectins.
The blood coagulation system is drastically altered in sep-

sis, as the physiological hemostatic balance is shifted toward
a procoagulation state. Tissue factor expression is induced
in CD14+ monocytes and endothelial cells responding to
acute inflammatory mediators (Figure 2). Neutralizing TNF
activity by introducing a TNF receptor-IgG fusion protein,
or an anti-TNF antibody, did not improve endotoxin-
induced coagulopathy [31,32]. By contrast, inhibition of IL-
6 completely abrogated tissue factor-dependent thrombin
generation, suggesting a major role for endogenous IL-6,
and to a lesser extent, IL-1 [33]. Tissue factor from endo-
thelial cells can be shuttled between cells through micro-
particles derived from activated mononuclear cells [34].
However, the contribution of tissue factor-positive micro-
particles to the development of DIC has not been deter-
mined [35].
Antithrombin is the primary inhibitor of both thrombin

and factor Xa and is markedly decreased in sepsis. This de-
crease is caused by the reduction in hepatic synthesis of
the negative acute phase protein, consumption by forma-
tion of thrombin-antithrombin complexes, and degrad-
ation by proteases released from activated neutrophils [36].
In addition, glycosaminoglycans including heparin sulfate,
hyaluronic acid, and chondroitin sulfate form an endothe-
lial surface layer, which contributes to the regulation of
thrombin and factor Xa by inducing the allosteric activa-
tion of antithrombin III. Degradation of the endothelial
Figure 2 Schematic representation of endothelial dysfunction in seps
TLR, toll-like receptor; PA-Plm, plasminogen activators-plasmin system; PAI-
surface layer has been implicated in the pathogenesis of
systemic inflammation, and protection of glycosaminogly-
cans is a goal of resuscitation strategies for intensive care
unit (ICU) patients [37]. Much attention has been devoted
to the role of thrombomodulin as a pivotal determinant of
endothelial thrombo-resistance as well as a target for the
resolution of vascular disorders in DIC. Suppression of
endothelial thrombomodulin expression by TNF-α has
been documented [38]. Several studies have suggested
that neutrophil-derived elastase and cathepsin G pro-
teolytically cleave endothelial cell surface thrombomo-
dulin. This increased thrombomodulin shedding is a
potential causative element of vascular injury [39]. An ele-
vated thrombomodulin serum level is widely regarded as an
important biomarker for endothelial dysfunction [40] and
has been found to correlate with the severity of sepsis-
induced DIC [41]. In addition, the amino-terminal lectin-
like domain of thrombomodulin plays a critical role in
regulating inflammatory responses. This domain functions
by inhibiting leukocyte adhesion onto endothelial cells and
complement pathways and degrading proinflammatory
high-mobility group box 1 protein [42]. The therapeutic
benefits of administering recombinant soluble thrombomo-
dulin as a treatment for severe inflammatory disorders such
as sepsis-induced DIC have been demonstrated in studies
conducted in Japan [43].

Endothelial cell dysfunction and the fibrinolysis system
The fibrinolysis system is mainly mediated by plasminogen
activators-plasmin system and regulated by a principal in-
hibitor PAI-1. Numerous studies have consistently found
that a marked increase in PAI-1 results in a fibrinolytic
shutdown in endotoxemia or sepsis, although a simultan-
eous increase in tPA often occurs [44]. Indeed, fibrinolysis
is. TF, tissue factor; IL-1β, interleukin-1β; TNFα, tumor necrosis factor α;
1, plasminogen activator inhibitor-1.
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Figure 3 Plasma plasminogen activator inhibitor-1 (PAI-1) levels correlate with multiple organ dysfunction scores using the sequential
organ failure assessment (SOFA) score in sepsis-induced DIC patients. DIC patients were classified into four groups according to PAI-1 levels
at the time of DIC diagnosis (<30 ng/mL, 30–60 ng/mL, 60–90 ng/mL, and >90 ng/mL), and the groups were compared with respect to SOFA
scores. Data are presented as the mean ± SEM. Reprinted with modifications from International Journal of Hematology [46].
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is suppressed by increased PAI-1 levels in the plasma of
DIC patients exhibiting SIRS with sepsis or trauma. Al-
though there may be some fibrinolytic activity in re-
sponse to the extensive formation of fibrin, the levels of
this activity are too low to counteract the systemic de-
position of fibrin clots in SIRS. PAI-1 expression was
localized primarily to endothelial cells at all levels of
the vasculature in endotoxemic animal models, suggest-
ing that plasma PAI-1 originates from endothelial cells
[45]. High levels of PAI-1 have been implicated as pre-
dictive for an adverse outcome in severe sepsis, and
suppressed fibrinolysis is one of the most important
predictors of multiple organ dysfunction during sepsis-
induced DIC (Figure 3) [46]. Additional measurements
were made at the time of ICU admission independently
discriminated between patients who developed DIC
from those who did not, including increased levels of
PAI-1, as well as thrombin-antithrombin complex, a
biomarker for activation of coagulation, and decreased
protein C as an indicator for consumption of coagula-
tion factor [47].
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Transient activation of plasminogen activators-plasmin
systems has been observed during the immediate post-
traumatic period, which results in a state of shock with
serious hemorrhaging [48]. Less than 1 h after severe in-
jury, catecholamine-induced endothelial damage, hyp-
oxia, and ischemia may invoke a marked release of tPA
from the endothelium into circulation resulting in the
conversion of large amounts of plasminogen to plasmin
[49]. However, there is some controversy and conflicting
data still surround the exact underlying pathophysiology.
Following the 24–48 h after trauma, the inflammatory
influences on coagulation favor a more prothrombotic
tendency, where proinflammatory cytokines downregulate
protein S, endothelial-based heparin sulfate proteoglycans,
thrombomodulin, and endothelial protein C receptor.

Endothelial cell dysfunction and leukocyte elastase
The release of PAMPs during a microbial infection in-
duces tissue macrophages to generate inflammatory cy-
tokines, including TNF-α, IL-1, and IL-8. The localized
activation of these cytokines contributes to host defenses
S
O

FA
 S

co
re

e-XDP (U/mL)

0

2

4

6

8

10

12

<3
(n=24)

3-10
(n=34)

10-30
(n=30)

>30
(n=29)

p<0.03

p<0.01 p<0.01
B

n degradation product by leukocyte elastase (e-XDPs) levels in
ified into four groups with e-XDPs levels (<3 U/mL, 3–10 U/mL, 10–30
er and (B) e-XDP) were compared with respect to SOFA scores. Data
osis Research [66].



Madoiwa Journal of Intensive Care  (2015) 3:8 Page 6 of 8
by attracting activated leukocytes to the site of infection.
However, the entry of inflammatory cytokines and PAMPs
into blood circulation may lead to microvascular damage
[50]. Leukocytes are known to release enzymes with intrinsic
proteolytic activity, including leukocyte elastase and cathep-
sin G, in a variety of clinical conditions. The subsequent
scope of leukocyte elastase activity is mediated by endogen-
ous inhibitors, predominantly α1-protease inhibitor [51,52].
Leukocyte elastase is a potent protease, as it cleaves nearly
all connective tissue components, including elastin and a
variety of proteoglycans. Interestingly, leukocyte elastase has
two opposing roles in fibrinolysis [53]. It promotes fibrino-
lytic functions by degrading fibrinogen and fibrin and
inactivating PAI-1 [54]. By contrast, leukocyte elastase
has antifibrinolytic activities cleaving plasminogen acti-
vators and plasmin [55].
Microthrombi caused by endothelial injuries induce ische-

mia and cause damage to a variety of organs in sepsis-
induced DIC. Multiple studies have implicated the proteases
released from leukocytes to be involved in the progression
of multiple organ injuries. A deficiency of ADAMTS13, also
known as VWF-cleaving protease, leads to the presence of
unusually large multimers. These are responsible for the ag-
gregation of platelet formation of microthrombi in the
circulatory system, which leads to typical thrombotic micro-
angiopathies [56]. Cleavage of ADAMTS13 by leukocyte
elastase together with thrombin and plasmin cause a severe
secondary ADAMTS13 deficiency, and there may be a clin-
ical correlation with renal endothelial cells dysfunction in
patients with sepsis-induced DIC [57].
Leukocytes exhibit the first line of response to micro-

organisms. Activated leukocytes and dying cells release
histones (particularly histones H3 and H4) and may
promote thrombus formation by inducing endothelial
injury during sepsis [58]. In addition, neutrophils stim-
ulated by activated platelets release the neutrophil extra-
cellular traps (NETs) containing histones, DNA, and
leukocyte-derived proteases [59]. Although NETs have
a pivotal role in the suppression of pathogen dissemin-
ation and killing of microorganisms, they also induce
tissue damage and thrombus formation [60,61].
Exposure to inflammatory mediators and interaction

with leukocytes causes endothelial activation and dysfunc-
tion, directly or indirectly [62]. However, leukocyte elas-
tase has been found to degrade cross-linked fibrin and to
yield molecular species distinct from those generated by
plasmin [63]. Thus, leukocyte elastase-mediated fibrinoly-
sis is activated to varying degrees, depending on the extent
of systemic inflammation (Figure 4) [64]. These alternative
systems for fibrinolysis, comprised of proteases other than
plasmin and their interactions with the plasminogen
activators-plasmin systems, have been thought to play cru-
cial roles in the fibrin lysis of clots in sepsis-induced DIC
[65,66]. The evaluation of leukocyte elastase-mediated
fibrinolysis and regulation of its activity by specific in-
hibitors could improve the poor outcomes common to
patients with sepsis-induced DIC [67].

Conclusions
It is clear that endothelial cell function, inflammatory me-
diators, and the associated crosstalk with blood coagulation
and fibrinolysis systems are altered in sepsis-induced DIC
and that significant heterogeneity exists in the host re-
sponse against a microbial infection [68]. Further research
elucidating basal mechanisms at the cellular and molecular
levels may bring clinicians closer to improving morbidity
and mortality of patients with sepsis-induced DIC.
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